亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The emergence of Consumer-to-Consumer (C2C) platforms has allowed consumers to buy and sell goods directly, but it has also created problems, such as commodity fraud and fake reviews. Trust Management Algorithms (TMAs) are expected to be a countermeasure to detect fraudulent users. However, it is unknown whether TMAs are as effective as reported as they are designed for Peer-to-Peer (P2P) communications between devices on a network. Here we examine the applicability of `EigenTrust', a representative TMA, for the use case of C2C services using an agent-based model. First, we defined the transaction process in C2C services, assumed six types of fraudulent transactions, and then analysed the dynamics of EigenTrust in C2C systems through simulations. We found that EigenTrust could correctly estimate low trust scores for two types of simple frauds. Furthermore, we found the oscillation of trust scores for two types of advanced frauds, which previous research did not address. This suggests that by detecting such oscillations, EigenTrust may be able to detect some (but not all) advanced frauds. Our study helps increase the trustworthiness of transactions in C2C services and provides insights into further technological development for consumer services.

相關內容

 C2C(Consumer to Consumer)消(xiao)(xiao)費(fei)(fei)者對消(xiao)(xiao)費(fei)(fei)者,即(ji)個人(ren)直接面對個人(ren)消(xiao)(xiao)費(fei)(fei)者進行產品及服務的銷售,是現在電子商務領域(yu)常(chang)見(jian)的一(yi)種(zhong)運營模(mo)式。

We propose a method that allows to develop shared understanding between two agents for the purpose of performing a task that requires cooperation. Our method focuses on efficiently establishing successful task-oriented communication in an open multi-agent system, where the agents do not know anything about each other and can only communicate via grounded interaction. The method aims to assist researchers that work on human-machine interaction or scenarios that require a human-in-the-loop, by defining interaction restrictions and efficiency metrics. To that end, we point out the challenges and limitations of such a (diverse) setup, while also restrictions and requirements which aim to ensure that high task performance truthfully reflects the extent to which the agents correctly understand each other. Furthermore, we demonstrate a use-case where our method can be applied for the task of cooperative query answering. We design the experiments by modifying an established ontology alignment benchmark. In this example, the agents want to query each other, while representing different databases, defined in their own ontologies that contain different and incomplete knowledge. Grounded interaction here has the form of examples that consists of common instances, for which the agents are expected to have similar knowledge. Our experiments demonstrate successful communication establishment under the required restrictions, and compare different agent policies that aim to solve the task in an efficient manner.

In the current landscape of ever-increasing levels of digitalization, we are facing major challenges pertaining to scalability. Recommender systems have become irreplaceable both for helping users navigate the increasing amounts of data and, conversely, aiding providers in marketing products to interested users. The growing awareness of discrimination in machine learning methods has recently motivated both academia and industry to research how fairness can be ensured in recommender systems. For recommender systems, such issues are well exemplified by occupation recommendation, where biases in historical data may lead to recommender systems relating one gender to lower wages or to the propagation of stereotypes. In particular, consumer-side fairness, which focuses on mitigating discrimination experienced by users of recommender systems, has seen a vast number of diverse approaches for addressing different types of discrimination. The nature of said discrimination depends on the setting and the applied fairness interpretation, of which there are many variations. This survey serves as a systematic overview and discussion of the current research on consumer-side fairness in recommender systems. To that end, a novel taxonomy based on high-level fairness interpretation is proposed and used to categorize the research and their proposed fairness evaluation metrics. Finally, we highlight some suggestions for the future direction of the field.

The detection of malicious websites has become a critical issue in cybersecurity. Therefore, this paper offers a comprehensive review of data-driven methods for detecting malicious websites. Traditional approaches and their limitations are discussed, followed by an overview of data-driven approaches. The paper establishes the data-feature-model-extension pipeline and the latest research developments of data-driven approaches, including data preprocessing, feature extraction, model construction and technology extension. Specifically, this paper compares methods using deep learning models proposed in recent years. Furthermore, the paper follows the data-feature-model-extension pipeline to discuss the challenges together with some future directions of data-driven methods in malicious website detection.

The rationale of this work is based on the current user trust discourse of Artificial Intelligence (AI). We aim to produce novel HCI approaches that use trust as a facilitator for the uptake (or appropriation) of current technologies. We propose a framework (HCTFrame) to guide non-experts to unlock the full potential of user trust in AI design. Results derived from a data triangulation of findings from three literature reviews demystify some misconceptions of user trust in computer science and AI discourse, and three case studies are conducted to assess the effectiveness of a psychometric scale in mapping potential users' trust breakdowns and concerns. This work primarily contributes to the fight against the tendency to design technical-centered vulnerable interactions, which can eventually lead to additional real and perceived breaches of trust. The proposed framework can be used to guide system designers on how to map and define user trust and the socioethical and organisational needs and characteristics of AI system design. It can also guide AI system designers on how to develop a prototype and operationalise a solution that meets user trust requirements. The article ends by providing some user research tools that can be employed to measure users' trust intentions and behaviours towards a proposed solution.

Introduction: The Canadian Guidelines recommend physical activity for overall health benefits, including cognitive, emotional, functional, and physical health. However, traditional research methods are inefficient and outdated. This paper aims to guide researchers in enhancing their research methods using software development kits and wearable smart devices. Methods: A generic model application was transformed into a research-based mobile application based on the UCLA researchers who collaborated with Apple. First, the research question and goals were identified. Then, three open-source software development kits (SDKs) were used to modify the generic model into the desired application. ResearchKit was used for informed consent, surveys, and active tasks. CareKit was the protocol manager to create participant protocols and track progress. Finally, HealthKit was used to access and share health-related data. The content expert evaluated the application, and the participant experience was optimized for easy use. The collected health-related data were analyzed to identify any significant findings. Results: Wearable health devices offer a convenient and non-invasive way to monitor and track health-related information. Conclusion: Leveraging the data provided by wearable devices, researchers can gain insights into the effectiveness of interventions and inform the development of evidence-based physical activity guidelines. The use of software development kits and wearable devices can enhance research methods and provide valuable insights into overall health benefits.

The Nash Equilibrium (NE) estimation in bidding games of electricity markets is the key concern of both generation companies (GENCOs) for bidding strategy optimization and the Independent System Operator (ISO) for market surveillance. However, existing methods for NE estimation in emerging modern electricity markets (FEM) are inaccurate and inefficient because the priori knowledge of bidding strategies before any environment changes, such as load demand variations, network congestion, and modifications of market design, is not fully utilized. In this paper, a Bayes-adaptive Markov Decision Process in FEM (BAMDP-FEM) is therefore developed to model the GENCOs' bidding strategy optimization considering the priori knowledge. A novel Multi-Agent Generative Adversarial Imitation Learning algorithm (MAGAIL-FEM) is then proposed to enable GENCOs to learn simultaneously from priori knowledge and interactions with changing environments. The obtained NE is a Bayesian Nash Equilibrium (BNE) with priori knowledge transferred from the previous environment. In the case study, the superiority of this proposed algorithm in terms of convergence speed compared with conventional methods is verified. It is concluded that the optimal bidding strategies in the obtained BNE can always lead to more profits than NE due to the effective learning from the priori knowledge. Also, BNE is more accurate and consistent with situations in real-world markets.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

This paper presents a succinct review of attempts in the literature to use game theory to model decision making scenarios relevant to defence applications. Game theory has been proven as a very effective tool in modelling decision making processes of intelligent agents, entities, and players. It has been used to model scenarios from diverse fields such as economics, evolutionary biology, and computer science. In defence applications, there is often a need to model and predict actions of hostile actors, and players who try to evade or out-smart each other. Modelling how the actions of competitive players shape the decision making of each other is the forte of game theory. In past decades, there have been several studies which applied different branches of game theory to model a range of defence-related scenarios. This paper provides a structured review of such attempts, and classifies existing literature in terms of the kind of warfare modelled, the types of game used, and the players involved. The presented analysis provides a concise summary about the state-of-the-art with regards to the use of game theory in defence applications, and highlights the benefits and limitations of game theory in the considered scenarios.

北京阿比特科技有限公司