亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) is a new distributed learning paradigm, with privacy, utility, and efficiency as its primary pillars. Existing research indicates that it is unlikely to simultaneously attain infinitesimal privacy leakage, utility loss, and efficiency. Therefore, how to find an optimal trade-off solution is the key consideration when designing the FL algorithm. One common way is to cast the trade-off problem as a multi-objective optimization problem, i.e., the goal is to minimize the utility loss and efficiency reduction while constraining the privacy leakage not exceeding a predefined value. However, existing multi-objective optimization frameworks are very time-consuming, and do not guarantee the existence of the Pareto frontier, this motivates us to seek a solution to transform the multi-objective problem into a single-objective problem because it is more efficient and easier to be solved. To this end, we propose FedPAC, a unified framework that leverages PAC learning to quantify multiple objectives in terms of sample complexity, such quantification allows us to constrain the solution space of multiple objectives to a shared dimension, so that it can be solved with the help of a single-objective optimization algorithm. Specifically, we provide the results and detailed analyses of how to quantify the utility loss, privacy leakage, privacy-utility-efficiency trade-off, as well as the cost of the attacker from the PAC learning perspective.

相關內容

The Shapley value is arguably the most popular approach for assigning a meaningful contribution value to players in a cooperative game, which has recently been used intensively in explainable artificial intelligence. The meaningfulness is due to axiomatic properties that only the Shapley value satisfies, which, however, comes at the expense of an exact computation growing exponentially with the number of agents. Accordingly, a number of works are devoted to the efficient approximation of the Shapley values, most of them revolve around the notion of an agent's marginal contribution. In this paper, we propose with SVARM and Stratified SVARM two parameter-free and domain-independent approximation algorithms based on a representation of the Shapley value detached from the notion of marginal contributions. We prove unmatched theoretical guarantees regarding their approximation quality and provide empirical results including synthetic games as well as common explainability use cases comparing ourselves with state-of-the-art methods.

Forward simulation-based uncertainty quantification that studies the distribution of quantities of interest (QoI) is a crucial component for computationally robust engineering design and prediction. There is a large body of literature devoted to accurately assessing statistics of QoIs, and in particular, multilevel or multifidelity approaches are known to be effective, leveraging cost-accuracy tradeoffs between a given ensemble of models. However, effective algorithms that can estimate the full distribution of QoIs are still under active development. In this paper, we introduce a general multifidelity framework for estimating the cumulative distribution function (CDF) of a vector-valued QoI associated with a high-fidelity model under a budget constraint. Given a family of appropriate control variates obtained from lower-fidelity surrogates, our framework involves identifying the most cost-effective model subset and then using it to build an approximate control variates estimator for the target CDF. We instantiate the framework by constructing a family of control variates using intermediate linear approximators and rigorously analyze the corresponding algorithm. Our analysis reveals that the resulting CDF estimator is uniformly consistent and asymptotically optimal as the budget tends to infinity, with only mild moment and regularity assumptions on the joint distribution of QoIs. The approach provides a robust multifidelity CDF estimator that is adaptive to the available budget, does not require \textit{a priori} knowledge of cross-model statistics or model hierarchy, and applies to multiple dimensions. We demonstrate the efficiency and robustness of the approach using test examples of parametric PDEs and stochastic differential equations including both academic instances and more challenging engineering problems.

The surveillance of a pandemic is a challenging task, especially when crucial data is distributed and stakeholders cannot or are unwilling to share. To overcome this obstacle, federated methodologies should be developed to incorporate less sensitive evidence that entities are willing to provide. This study aims to explore the feasibility of pushing hypothesis tests behind each custodian's firewall and then meta-analysis to combine the results, and to determine the optimal approach for reconstructing the hypothesis test and optimizing the inference. We propose a hypothesis testing framework to identify a surge in the indicators and conduct power analyses and experiments on real and semi-synthetic data to showcase the properties of our proposed hypothesis test and suggest suitable methods for combining $p$-values. Our findings highlight the potential of using $p$-value combination as a federated methodology for pandemic surveillance and provide valuable insights into integrating available data sources.

Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner, while preserving data privacy. Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified. Towards mitigating the carbon footprint of FL, the current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization, by orchestrating the computational and communication resources of the involved devices, while guaranteeing a certain FL model performance target. A penalty function is introduced in the offline phase of the GA that penalizes the strategies that violate the constraints of the environment, ensuring a safe GA process. Evaluation results show the effectiveness of the proposed scheme compared to two state-of-the-art baseline solutions, achieving a decrease of up to 83% in the total energy consumption.

The availability of large amounts of informative data is crucial for successful machine learning. However, in domains with sensitive information, the release of high-utility data which protects the privacy of individuals has proven challenging. Despite progress in differential privacy and generative modeling for privacy-preserving data release in the literature, only a few approaches optimize for machine learning utility: most approaches only take into account statistical metrics on the data itself and fail to explicitly preserve the loss metrics of machine learning models that are to be subsequently trained on the generated data. In this paper, we introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning, while preserving differential privacy. We also describe a specific implementation of this framework that leverages mixture models to approximate, kernel-inducing points to adapt, and Gaussian differential privacy to anonymize a dataset, in order to ensure that the resulting data is both privacy-preserving and high utility. We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets, when evaluated on held-out real data. We also compare our results with several privacy-preserving synthetic data generation models (such as differentially private generative adversarial networks), and report significant increases in classification performance metrics compared to state-of-the-art models. These favorable comparisons show that the presented framework is a promising direction of research, increasing the utility of low-risk synthetic data release for machine learning.

With recent advancements in technology, the threats of privacy violations of individuals' sensitive data are surging. Location data, in particular, have been shown to carry a substantial amount of sensitive information. A standard method to mitigate the privacy risks for location data consists in adding noise to the true values to achieve geo-indistinguishability (geo-ind). However, geo-ind alone is not sufficient to cover all privacy concerns. In particular, isolated locations are not sufficiently protected by the state-of-the-art Laplace mechanism (LAP) for geo-ind. In this paper, we focus on a mechanism based on the Blahut-Arimoto algorithm (BA) from the rate-distortion theory. We show that BA, in addition to providing geo-ind, enforces an elastic metric that mitigates the problem of isolation. Furthermore, BA provides an optimal trade-off between information leakage and quality of service. We then proceed to study the utility of BA in terms of the statistics that can be derived from the reported data, focusing on the inference of the original distribution. To this purpose, we de-noise the reported data by applying the iterative Bayesian update (IBU), an instance of the expectation-maximization method. It turns out that BA and IBU are dual to each other, and as a result, they work well together, in the sense that the statistical utility of BA is quite good and better than LAP for high privacy levels. Exploiting these properties of BA and IBU, we propose an iterative method, PRIVIC, for a privacy-friendly incremental collection of location data from users by service providers. We illustrate the soundness and functionality of our method both analytically and with experiments.

Federated online learning to rank (FOLTR) aims to preserve user privacy by not sharing their searchable data and search interactions, while guaranteeing high search effectiveness, especially in contexts where individual users have scarce training data and interactions. For this, FOLTR trains learning to rank models in an online manner -- i.e. by exploiting users' interactions with the search systems (queries, clicks), rather than labels -- and federatively -- i.e. by not aggregating interaction data in a central server for training purposes, but by training instances of a model on each user device on their own private data, and then sharing the model updates, not the data, across a set of users that have formed the federation. Existing FOLTR methods build upon advances in federated learning. While federated learning methods have been shown effective at training machine learning models in a distributed way without the need of data sharing, they can be susceptible to attacks that target either the system's security or its overall effectiveness. In this paper, we consider attacks on FOLTR systems that aim to compromise their search effectiveness. Within this scope, we experiment with and analyse data and model poisoning attack methods to showcase their impact on FOLTR search effectiveness. We also explore the effectiveness of defense methods designed to counteract attacks on FOLTR systems. We contribute an understanding of the effect of attack and defense methods for FOLTR systems, as well as identifying the key factors influencing their effectiveness.

Experimental and observational studies often lack validity due to untestable assumptions. We propose a double machine learning approach to combine experimental and observational studies, allowing practitioners to test for assumption violations and estimate treatment effects consistently. Our framework tests for violations of external validity and ignorability under milder assumptions. When only one assumption is violated, we provide semi-parametrically efficient treatment effect estimators. However, our no-free-lunch theorem highlights the necessity of accurately identifying the violated assumption for consistent treatment effect estimation. We demonstrate the applicability of our approach in three real-world case studies, highlighting its relevance for practical settings.

Accurately estimating gas usage is essential for the efficient functioning of gas distribution networks and saving operational costs. Traditional methods rely on centralized data processing, which poses privacy risks. Federated learning (FL) offers a solution to this problem by enabling local data processing on each participant, such as gas companies and heating stations. However, local training and communication overhead may discourage gas companies and heating stations from actively participating in the FL training process. To address this challenge, we propose a Hierarchical FL Incentive Mechanism for Gas Usage Estimation (HI-GAS), which has been testbedded in the ENN Group, one of the leading players in the natural gas and green energy industry. It is designed to support horizontal FL among gas companies, and vertical FL among each gas company and heating station within a hierarchical FL ecosystem, rewarding participants based on their contributions to FL. In addition, a hierarchical FL model aggregation approach is also proposed to improve the gas usage estimation performance by aggregating models at different levels of the hierarchy. The incentive scheme employs a multi-dimensional contribution-aware reward distribution function that combines the evaluation of data quality and model contribution to incentivize both gas companies and heating stations within their jurisdiction while maintaining fairness. Results of extensive experiments validate the effectiveness of the proposed mechanism.

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.

北京阿比特科技有限公司