亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a novel modelling approach for a heavy-duty manipulator with parallel$-$serial structures connected in series. Each considered parallel$-$serial structure contains a revolute segment with rigid links connected by a passive revolute joint and actuated by a linear hydraulic actuator, thus forming a closed kinematic loop. In addition, prismatic segments, consisting of prismatic joints driven by hydraulic linear actuators, also are considered. Expressions for actuator forces are derived using the Newton$-$Euler (N$-$E) dynamics formulation. The derivation process does not assume massless actuators decoupled from manipulator links, which is common in the Lagrange dynamics formulation. Actuator pressure dynamics are included in the analysis, leading in total to a third-order system of ordinary differential equations (ODEs). The proposed model in the N$-$E framework, with fewer parameters than its predecessors, inspires revision of the virtual decomposition control (VDC) systematic process to formulate a control law based on the new model. The virtual stability of each generic manipulator revolute and prismatic segment is obtained, leading to the Lyapunov stability of the entire robot.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 模型評估 · 線性的 · Performer · 優化器 ·
2021 年 10 月 11 日

One of the major issues in the computational mechanics is to take into account the geometrical complexity. To overcome this difficulty and to avoid the expensive mesh generation, geometrically unfitted methods, i.e. the numerical methods using the simple computational meshes that do not fit the boundary of the domain, and/or the internal interfaces, have been widely developed. In the present work, we investigate the performances of an unfitted method called $\phi$-FEM that converges optimally and uses classical finite element spaces so that it can be easily implemented using general FEM libraries. The main idea is to take into account the geometry thanks to a level set function describing the boundary or the interface. Up to now, the $\phi$-FEM approach has been proposed, tested and substantiated mathematically only in some simplest settings: Poisson equation with Dirichlet/Neumann/Robin boundary conditions. Our goal here is to demonstrate its applicability to some more sophisticated governing equations arising in the computational mechanics. We consider the linear elasticity equations accompanied by either pure Dirichlet boundary conditions or by the mixed ones (Dirichlet and Neumann boundary conditions co-existing on parts of the boundary), an interface problem (linear elasticity with material coefficients abruptly changing over an internal interface), a model of elastic structures with cracks, and finally the heat equation. In all these settings, we derive an appropriate variant of $\phi$-FEM and then illustrate it by numerical tests on manufactured solutions. We also compare the accuracy and efficiency of $\phi$-FEM with those of the standard fitted FEM on the meshes of similar size, revealing the substantial gains that can be achieved by $\phi$-FEM in both the accuracy and the computational time.

Lookup tables (finite maps) are a ubiquitous data structure. In pure functional languages they are best represented using trees instead of hash tables. In pure functional languages within constructive logic, without a primitive integer type, they are well represented using binary tries instead of search trees. In this work, we introduce canonical binary tries, an improved binary-trie data structure that enjoys a natural extensionality property, quite useful in proofs, and supports sparseness more efficiently. We provide full proofs of correctness in Coq. We provide microbenchmark measurements of canonical binary tries versus several other data structures for finite maps, in a variety of application contexts; as well as measurement of canonical versus original tries in a big, real system. The application context of data structures contained in theorem statements imposes unusual requirements for which canonical tries are particularly well suited.

In this article, the control problem of one section pneumatically actuated soft robotic arm is investigated in detail. To date, extensive prior work has been done in soft robotics kinematics and dynamics modeling. Proper controller designs can complement the modeling part since they are able to compensate other effects that have not been considered in the modeling, such as the model uncertainties, system parameter identification error, hysteresis, etc. In this paper, we explored different control approaches (kinematic control, PD+feedback linearization, passivity control, adaptive passivity control) and summarized the advantages and disadvantages of each controller. We further investigated the robot control problem in the practical scenarios when the sensor noise exists, actuator velocity measurement is not available, and the hysteresis effect is non-neglectable. Our simulation results indicated that the adaptive passivity control with sigma modification terms, along with a high-gain observer presents a better performance in comparison with other approaches. Although this paper mainly presented the simulation results of various controllers, the work will pave the way for practical implementation of soft robot control.

We study a numerical approximation for a nonlinear variable-order fractional differential equation via an integral equation method. Due to the lack of the monotonicity of the discretization coefficients of the variable-order fractional derivative in standard approximation schemes, existing numerical analysis techniques do not apply directly. By an approximate inversion technique, the proposed model is transformed as a second kind Volterra integral equation, based on which a collocation method under uniform or graded mesh is developed and analyzed. In particular, the error estimates improve the existing results by proving a consistent and sharper mesh grading parameter and characterizing the convergence rates in terms of the initial value of the variable order, which demonstrates its critical role in determining the smoothness of the solutions and thus the numerical accuracy.

In this study, we focus on the modelling of coupled systems of shallow water flows and solute transport with source terms due to variable topography and friction effect. Our aim is to propose efficient and accurate numerical techniques for modelling these systems using unstructured triangular grids. We used a Riemann-solver free method for the hyperbolic shallow water system and a suitable discretization technique for the bottom topography. The friction source term is discretized using the techniques proposed by (Xia and Liang 2018). Our approach performs very well for stationary flow in the presence of variable topography, and it is well-balanced for the concentration in the presence of wet and dry zones. In our techniques, we used linear piecewise reconstructions for the variables of the coupled system. The proposed method is well-balanced, and we prove that it exactly preserves the nontrivial steady-state solutions of the coupled system. Numerical experiments are carried out to validate the performance and robustness of the proposed numerical method. Our numerical results show that the method is stable, well-balanced and accurate to model the coupled systems of shallow water flows and solute transport.

This paper presents a generic framework for the numerical simulation of transformation-diffusion processes in complex volume geometric shapes. This work follows a previous one devoted to the simulation of microbial degradation of organic matter in porous system at microscopic scale. We generalized and improved the MOSAIC method significantly and thus yielding a much more generic and efficient numerical simulation scheme. In particular, regarding the simulation of diffusion processes from the graph, in this study we proposed a completely explicit and semi-implicit numerical scheme that can significantly reduce the computational complexity. We validated our method by comparing the results to the one provided by classical Lattice Boltzmann Method (LBM) within the context of microbial decomposition simulation. For the same datasets, we obtained similar results in a significantly shorter computing time (i.e., 10-15 minutes) than the prior work (several hours). Besides the classical LBM method takes around 3 weeks computing time.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Despite recent advances in Visual QuestionAnswering (VQA), it remains a challenge todetermine how much success can be attributedto sound reasoning and comprehension ability.We seek to investigate this question by propos-ing a new task ofrationale generation. Es-sentially, we task a VQA model with generat-ing rationales for the answers it predicts. Weuse data from the Visual Commonsense Rea-soning (VCR) task, as it contains ground-truthrationales along with visual questions and an-swers. We first investigate commonsense un-derstanding in one of the leading VCR mod-els, ViLBERT, by generating rationales frompretrained weights using a state-of-the-art lan-guage model, GPT-2. Next, we seek to jointlytrain ViLBERT with GPT-2 in an end-to-endfashion with the dual task of predicting the an-swer in VQA and generating rationales. Weshow that this kind of training injects com-monsense understanding in the VQA modelthrough quantitative and qualitative evaluationmetrics

We present a new clustering method in the form of a single clustering equation that is able to directly discover groupings in the data. The main proposition is that the first neighbor of each sample is all one needs to discover large chains and finding the groups in the data. In contrast to most existing clustering algorithms our method does not require any hyper-parameters, distance thresholds and/or the need to specify the number of clusters. The proposed algorithm belongs to the family of hierarchical agglomerative methods. The technique has a very low computational overhead, is easily scalable and applicable to large practical problems. Evaluation on well known datasets from different domains ranging between 1077 and 8.1 million samples shows substantial performance gains when compared to the existing clustering techniques.

In this paper we aim to answer questions based on images when provided with a dataset of question-answer pairs for a number of images during training. A number of methods have focused on solving this problem by using image based attention. This is done by focusing on a specific part of the image while answering the question. Humans also do so when solving this problem. However, the regions that the previous systems focus on are not correlated with the regions that humans focus on. The accuracy is limited due to this drawback. In this paper, we propose to solve this problem by using an exemplar based method. We obtain one or more supporting and opposing exemplars to obtain a differential attention region. This differential attention is closer to human attention than other image based attention methods. It also helps in obtaining improved accuracy when answering questions. The method is evaluated on challenging benchmark datasets. We perform better than other image based attention methods and are competitive with other state of the art methods that focus on both image and questions.

北京阿比特科技有限公司