Faster-than-Nyquist (FTN) signaling is a non-orthogonal transmission technique, which has the potential to provide significant spectral efficiency improvement. This paper studies the capacity of FTN signaling for point-to-point single-input single-output (SISO) and multiple-input multiple-output (MIMO) channels. Although the capacity of SISO FTN was studied previously, due to some incomplete prerequisites, the exact capacity expression was not found. In this paper we resolve these issues for SISO FTN and generalize the result to MIMO FTN. We show that joint waterfilling in time and space is capacity achieving for MIMO FTN.
The Wiener-Hopf equations are a Toeplitz system of linear equations that naturally arise in several applications in time series. These include the update and prediction step of the stationary Kalman filter equations and the prediction of bivariate time series. The celebrated Wiener-Hopf technique is usually used for solving these equations and is based on a comparison of coefficients in a Fourier series expansion. However, a statistical interpretation of both the method and solution is opaque. The purpose of this note is to revisit the (discrete) Wiener-Hopf equations and obtain an alternative solution that is more aligned with classical techniques in time series analysis. Specifically, we propose a solution to the Wiener-Hopf equations that combines linear prediction with deconvolution. The Wiener-Hopf solution requires the spectral factorization of the underlying spectral density function. For ease of evaluation it is often assumed that the spectral density is rational. This allows one to obtain a computationally tractable solution. However, this leads to an approximation error when the underlying spectral density is not a rational function. We use the proposed solution with Baxter's inequality to derive an error bound for the rational spectral density approximation.
Coded distributed computing (CDC) can trade extra computing power to reduce the communication load for the MapReduce-type systems. The optimal computation-communication tradeoff has been well studied for homogeneous systems, and some results have also been obtained under the heterogeneous condition in recent studies. However, the previous works allow the file placement and Reduce function assignment free to design for the scheme. In this paper, we consider the general heterogeneous MapReduce system, where the file placement and Reduce function assignment are arbitrary but prefixed among all nodes (i.e., can not be designed by the scheme), and the storage and the computational capabilities for different nodes are not necessarily equal. We propose two {universal} CDC schemes and establish upper bounds of the optimal communication load. The first achievable scheme, namely One-Shot Coded Transmission (OSCT), encodes the intermediate values (IVs) into message blocks with different sizes to exploit the multicasting gain, and each message block can be decoded independently by the intended nodes. The second scheme, namely Few-Shot Coded Transmission (FSCT), splits IVs into smaller pieces and each node jointly decodes multiple message blocks to obtain its desired IVs. We prove that our OSCT and FSCT are optimal in many cases, and give sufficient conditions for the optimality of OSCT and FSCT, respectively.
Massive multiple-input multiple-output (MIMO) is promising for low earth orbit (LEO) satellite communications due to the potential in enhancing the spectral efficiency. However, the conventional fully digital precoding architectures might lead to high implementation complexity and energy consumption. In this paper, hybrid analog/digital precoding solutions are developed for the downlink operation in LEO massive MIMO satellite communications, by exploiting the slow-varying statistical channel state information (CSI) at the transmitter. First, we formulate the hybrid precoder design as an energy efficiency (EE) maximization problem by considering both the continuous and discrete phase shift networks for implementing the analog precoder. The cases of both the fully and the partially connected architectures are considered. Since the EE optimization problem is nonconvex, it is in general difficult to solve. To make the EE maximization problem tractable, we apply a closed-form tight upper bound to approximate the ergodic rate. Then, we develop an efficient algorithm to obtain the fully digital precoders. Based on which, we further develop two different efficient algorithmic solutions to compute the hybrid precoders for the fully and the partially connected architectures, respectively. Simulation results show that the proposed approaches achieve significant EE performance gains over the existing baselines, especially when the discrete phase shift network is employed for analog precoding.
Terahertz (THz) communications have naturally promising physical layer security (PLS) performance in the angular domain due to the high directivity feature. However, if eavesdroppers reside in the beam sector, the directivity fails to work effectively to handle this range-domain security problem. More critically, with an eavesdropper inside the beam sector and nearer to the transmitter than the legitimate receiver, i.e., in close proximity, secure communication is jeopardized. This open challenge motivates this work to study PLS techniques to enhance THz range-angle security. In this paper, a novel widely-spaced array and beamforming (WASABI) design for THz range-angle secure communication is proposed, based on the uniform planar array and hybrid beamforming. Specifically, the WASABI design is theoretically proved to achieve the optimal secrecy rate powered by the non-constrained optimum approaching (NCOA) algorithm with more than one RF chain, i.e., with the hybrid beamforming scheme. Moreover, with a low-complexity and sub-optimal analog beamforming, the WASABI scheme can achieve sub-optimal performance with less than 5% secrecy rate degradation. Simulation results illustrate that our proposed widely-spaced antenna communication scheme can ensure a 6bps/Hz secrecy rate when the transmit power is 10dBm. Finally, a frequency diverse array, as an advocated range security candidate in the literature, is proven to be ineffective to enhance range security.
In this letter, we analyze the performance of covert communications under faster-than-Nyquist (FTN) signaling in the Rayleigh block fading channel. Both Bayesian criterion- and Kullback-Leibler (KL) divergence-based covertness constraints are considered. Especially, for KL divergence-based one, we prove that both the maximum transmit power and covert rate under FTN signaling are higher than those under Nyquist signaling. Numerical results coincide with our analysis and validate the advantages of FTN signaling to realize covert data transmission.
We derive and analyze a symmetric interior penalty discontinuous Galerkin scheme for the approximation of the second-order form of the radiative transfer equation in slab geometry. Using appropriate trace lemmas, the analysis can be carried out as for more standard elliptic problems. Supporting examples show the accuracy and stability of the method also numerically. For discretization, we employ quadtree-like grids, which allow for local refinement in phase-space, and we show exemplary that adaptive methods can efficiently approximate discontinuous solutions.
Integrated sensing and communication (ISAC) has opened up numerous game-changing opportunities for realizing future wireless systems. In this paper, we propose an ISAC processing framework relying on millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Specifically, we provide a compressed sampling (CS) perspective to facilitate ISAC processing, which can not only recover the large-scale channel state information or/and radar imaging information, but also significantly reduce pilot overhead. First, an energy-efficient widely spaced array (WSA) architecture is tailored for the radar receiver, which enhances the angular resolution of radar sensing at the cost of angular ambiguity. Then, we propose an ISAC frame structure for time-variant ISAC systems considering different timescales. The pilot waveforms are judiciously designed by taking into account both CS theories and hardware constraints. Next, we design the dedicated dictionary for WSA that serves as a building block for formulating the ISAC processing as sparse signal recovery problems. The orthogonal matching pursuit with support refinement (OMP-SR) algorithm is proposed to effectively solve the problems in the existence of the angular ambiguity. We also provide a framework for estimating and compensating the Doppler frequencies during payload data transmission to guarantee communication performances. Simulation results demonstrate the good performances of both communications and radar sensing under the proposed ISAC framework.
Adaptive partial linear beamforming meets the need of 5G and future 6G applications for high flexibility and adaptability. Choosing an appropriate tradeoff between conflicting goals opens the recently proposed multiuser (MU) detection method. Due to their high spatial resolution, nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity. However, a dramatic decrease in performance can be expected in high mobility scenarios because they are very susceptible to changes in the wireless channel. The robustness of linear filters is required, considering these changes. One way to respond appropriately is to use online machine learning algorithms. The theory of algorithms based on the adaptive projected subgradient method (APSM) is rich, and they promise accurate tracking capabilities in dynamic wireless environments. However, one of the main challenges comes from the real-time implementation of these algorithms, which involve projections on time-varying closed convex sets. While the projection operations are relatively simple, their vast number poses a challenge in ultralow latency (ULL) applications where latency constraints must be satisfied in every radio frame. Taking non-orthogonal multiple access (NOMA) systems as an example, this paper explores the acceleration of APSM-based algorithms through massive parallelization. The result is a GPU-accelerated real-time implementation of an orthogonal frequency-division multiplexing (OFDM)-based transceiver that enables detection latency of less than one millisecond and therefore complies with the requirements of 5G and beyond. To meet the stringent physical layer latency requirements, careful co-design of hardware and software is essential, especially in virtualized wireless systems with hardware accelerators.
Integrated Sensing and Communication (ISAC) has attracted substantial attraction in recent years for spectral efficiency improvement, enabling hardware and spectrum sharing for simultaneous sensing and signaling operations. In-band Full Duplex (FD) is being considered as a key enabling technology for ISAC applications due to its simultaneous transmission and reception capability. In this paper, we present an FD-based ISAC system operating at millimeter Wave (mmWave) frequencies, where a massive Multiple-Input Multiple-Output (MIMO) Base Station (BS) node employing hybrid Analog and Digital (A/D) beamforming is communicating with a DownLink (DL) multi-antenna user and the same waveform is utilized at the BS receiver for sensing the radar targets in its coverage environment. We develop a sensing algorithm that is capable of estimating Direction of Arrival (DoA), range, and relative velocity of the radar targets. A joint optimization framework for designing the A/D transmit and receive beamformers as well as the Self-Interference (SI) cancellation is presented with the objective to maximize the achievable DL rate and the accuracy of the radar target sensing performance. Our simulation results, considering fifth Generation (5G) Orthogonal Frequency Division Multiplexing (OFDM) waveforms, verify our approach's high precision in estimating DoA, range, and velocity of multiple radar targets, while maximizing the DL communication rate.
《Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource Machine Translation》K Murray, J Kinnison, T Q. Nguyen, W Scheirer, D Chiang [University of Notre Dame] (2019)