亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We review the rapidly growing literature on auxiliary information-based (AIB) process monitoring methods. Under this approach, there is an assumption that the auxiliary variable, which is correlated with the quality variable of interest, has a known mean, or some other parameter, which cannot change over time. We demonstrate that violations of this assumption can have serious adverse effects both when the process is stable and when there has been a process shift. Some process shifts can become undetectable. We also show that the basic AIB approach is a special case of simple linear regression profile monitoring. The AIB charting techniques require strong assumptions. Based on our results, we warn against the use of AIB approach in quality control applications.

相關內容

Processing 是一門開源編(bian)程語言和(he)與之配套的(de)集成(cheng)開發(fa)環(huan)境(IDE)的(de)名(ming)稱。Processing 在電子藝術(shu)和(he)視覺(jue)設(she)計社(she)區被用(yong)來教授編(bian)程基(ji)礎,并運用(yong)于大(da)量的(de)新媒體和(he)互(hu)動(dong)藝術(shu)作品中。

Business process deviance refers to the phenomenon whereby a subset of the executions of a business process deviate, in a negative or positive way, with respect to {their} expected or desirable outcomes. Deviant executions of a business process include those that violate compliance rules, or executions that undershoot or exceed performance targets. Deviance mining is concerned with uncovering the reasons for deviant executions by analyzing event logs stored by the systems supporting the execution of a business process. In this paper, the problem of explaining deviations in business processes is first investigated by using features based on sequential and declarative patterns, and a combination of them. Then, the explanations are further improved by leveraging the data attributes of events and traces in event logs through features based on pure data attribute values and data-aware declarative rules. The explanations characterizing the deviances are then extracted by direct and indirect methods for rule induction. Using real-life logs from multiple domains, a range of feature types and different forms of decision rules are evaluated in terms of their ability to accurately discriminate between non-deviant and deviant executions of a process as well as in terms of understandability of the final outcome returned to the users.

Recently, biclustering is one of the hot topics in bioinformatics and takes the attention of authors from several different disciplines. Hence, many different methodologies from a variety of disciplines are proposed as a solution to the biclustering problem. As a consequence of this issue, a variety of solutions makes it harder to evaluate the proposed methods. With this review paper, we are aimed to discuss both analysis and visualization of biclustering as a guide for the comparisons between brand new and existing biclustering algorithms. Additionally, we concentrate on the tools that provide visualizations with accompanied analysis techniques. Through the paper, we give several references that are also a short review of the state of the art for the ones who will pursue research on biclustering. The Paper outline is as follows; we first give the visualization and analysis methods, then we evaluate each proposed tool with the visualization contribution and analysis options, finally, we discuss future directions for biclustering and we propose standards for future work.

In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.

Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Open Information Extraction (OpenIE) methods extract (noun phrase, relation phrase, noun phrase) triples from text, resulting in the construction of large Open Knowledge Bases (Open KBs). The noun phrases (NPs) and relation phrases in such Open KBs are not canonicalized, leading to the storage of redundant and ambiguous facts. Recent research has posed canonicalization of Open KBs as clustering over manuallydefined feature spaces. Manual feature engineering is expensive and often sub-optimal. In order to overcome this challenge, we propose Canonicalization using Embeddings and Side Information (CESI) - a novel approach which performs canonicalization over learned embeddings of Open KBs. CESI extends recent advances in KB embedding by incorporating relevant NP and relation phrase side information in a principled manner. Through extensive experiments on multiple real-world datasets, we demonstrate CESI's effectiveness.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

Movie recommendation systems provide users with ranked lists of movies based on individual's preferences and constraints. Two types of models are commonly used to generate ranking results: long-term models and session-based models. While long-term models represent the interactions between users and movies that are supposed to change slowly across time, session-based models encode the information of users' interests and changing dynamics of movies' attributes in short terms. In this paper, we propose an LSIC model, leveraging Long and Short-term Information in Content-aware movie recommendation using adversarial training. In the adversarial process, we train a generator as an agent of reinforcement learning which recommends the next movie to a user sequentially. We also train a discriminator which attempts to distinguish the generated list of movies from the real records. The poster information of movies is integrated to further improve the performance of movie recommendation, which is specifically essential when few ratings are available. The experiments demonstrate that the proposed model has robust superiority over competitors and sets the state-of-the-art. We will release the source code of this work after publication.

北京阿比特科技有限公司