Local Stochastic Gradient Descent (SGD) with periodic model averaging (FedAvg) is a foundational algorithm in Federated Learning. The algorithm independently runs SGD on multiple workers and periodically averages the model across all the workers. When local SGD runs with many workers, however, the periodic averaging causes a significant model discrepancy across the workers making the global loss converge slowly. While recent advanced optimization methods tackle the issue focused on non-IID settings, there still exists the model discrepancy issue due to the underlying periodic model averaging. We propose a partial model averaging framework that mitigates the model discrepancy issue in Federated Learning. The partial averaging encourages the local models to stay close to each other on parameter space, and it enables to more effectively minimize the global loss. Given a fixed number of iterations and a large number of workers (128), the partial averaging achieves up to 2.2% higher validation accuracy than the periodic full averaging.
Federated learning (FL) aims to minimize the communication complexity of training a model over heterogeneous data distributed across many clients. A common approach is local methods, where clients take multiple optimization steps over local data before communicating with the server (e.g., FedAvg). Local methods can exploit similarity between clients' data. However, in existing analyses, this comes at the cost of slow convergence in terms of the dependence on the number of communication rounds R. On the other hand, global methods, where clients simply return a gradient vector in each round (e.g., SGD), converge faster in terms of R but fail to exploit the similarity between clients even when clients are homogeneous. We propose FedChain, an algorithmic framework that combines the strengths of local methods and global methods to achieve fast convergence in terms of R while leveraging the similarity between clients. Using FedChain, we instantiate algorithms that improve upon previously known rates in the general convex and PL settings, and are near-optimal (via an algorithm-independent lower bound that we show) for problems that satisfy strong convexity. Empirical results support this theoretical gain over existing methods.
In this perspective paper we study the effect of non independent and identically distributed (non-IID) data on federated online learning to rank (FOLTR) and chart directions for future work in this new and largely unexplored research area of Information Retrieval. In the FOLTR process, clients join a federation to jointly create an effective ranker from the implicit click signal originating in each client, without the need to share data (documents, queries, clicks). A well-known factor that affects the performance of federated learning systems, and that poses serious challenges to these approaches, is the fact that there may be some type of bias in the way the data is distributed across clients. While FOLTR systems are on their own rights a type of federated learning system, the presence and effect of non-IID data in FOLTR has not been studied. To this aim, we first enumerate possible data distribution settings that may showcase data bias across clients and thus give rise to the non-IID problem. Then, we study the impact of each of these settings on the performance of the current state-of-the-art FOLTR approach, the Federated Pairwise Differentiable Gradient Descent (FPDGD), and we highlight which data distributions may pose a problem for FOLTR methods. We also explore how common approaches proposed in the federated learning literature address non-IID issues in FOLTR. This allows us to unveil new research gaps that, we argue, future research in FOLTR should consider. This is an important contribution to the current state of the field of FOLTR because, for FOLTR systems to be deployed, the factors affecting their performance, including the impact of non-IID data, need to thoroughly be understood.
As machine learning algorithms become increasingly integrated in crucial decision-making scenarios, such as healthcare, recruitment, and risk assessment, there have been increasing concerns about the privacy and fairness of such systems. Federated learning has been viewed as a promising solution for collaboratively training of machine learning models among multiple parties while maintaining the privacy of their local data. However, federated learning also poses new challenges in mitigating the potential bias against certain populations (e.g., demographic groups), as this typically requires centralized access to the sensitive information (e.g., race, gender) of each data point. Motivated by the importance and challenges of group fairness in federated learning, in this work, we propose FairFed, a novel algorithm to enhance group fairness via a fairness-aware aggregation method, which aims to provide fair model performance across different sensitive groups (e.g., racial, gender groups) while maintaining high utility. This formulation can further provide more flexibility in the customized local debiasing strategies for each client. We build our FairFed algorithm around the secure aggregation protocol of federated learning. When running federated training on widely investigated fairness datasets, we demonstrate that our proposed method outperforms the state-of-the-art fair federated learning frameworks under a high heterogeneous sensitive attribute distribution. We also investigate the performance of FairFed on naturally distributed real-life data collected from different geographical locations or departments within an organization.
The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.
As a distributed learning paradigm, Federated Learning (FL) faces the communication bottleneck issue due to many rounds of model synchronization and aggregation. Heterogeneous data further deteriorates the situation by causing slow convergence. Although the impact of data heterogeneity on supervised FL has been widely studied, the related investigation for Federated Reinforcement Learning (FRL) is still in its infancy. In this paper, we first define the type and level of data heterogeneity for policy gradient based FRL systems. By inspecting the connection between the global and local objective functions, we prove that local training can benefit the global objective, if the local update is properly penalized by the total variation (TV) distance between the local and global policies. A necessary condition for the global policy to be learn-able from the local policy is also derived, which is directly related to the heterogeneity level. Based on the theoretical result, a Kullback-Leibler (KL) divergence based penalty is proposed, which, different from the conventional method that penalizes the model divergence in the parameter space, directly constrains the model outputs in the distribution space. By jointly penalizing the divergence of the local policy from the global policy with a global penalty and constraining each iteration of the local training with a local penalty, the proposed method achieves a better trade-off between training speed (step size) and convergence. Experiment results on two popular RL experiment platforms demonstrate the advantage of the proposed algorithm over existing methods in accelerating and stabilizing the training process with heterogeneous data.
In the context of personalized federated learning (FL), the critical challenge is to balance local model improvement and global model tuning when the personal and global objectives may not be exactly aligned. Inspired by Bayesian hierarchical models, we develop a self-aware personalized FL method where each client can automatically balance the training of its local personal model and the global model that implicitly contributes to other clients' training. Such a balance is derived from the inter-client and intra-client uncertainty quantification. A larger inter-client variation implies more personalization is needed. Correspondingly, our method uses uncertainty-driven local training steps and aggregation rule instead of conventional local fine-tuning and sample size-based aggregation. With experimental studies on synthetic data, Amazon Alexa audio data, and public datasets such as MNIST, FEMNIST, CIFAR10, and Sent140, we show that our proposed method can achieve significantly improved personalization performance compared with the existing counterparts.
Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.
Federated learning (FL) is a distributed machine learning paradigm in which the server periodically aggregates local model parameters from clients without assembling their private data. Constrained communication and personalization requirements pose severe challenges to FL. Federated distillation (FD) is proposed to simultaneously address the above two problems, which exchanges knowledge between the server and clients, supporting heterogeneous local models while significantly reducing communication overhead. However, most existing FD methods require a proxy dataset, which is often unavailable in reality. A few recent proxy-data-free FD approaches can eliminate the need for additional public data, but suffer from remarkable discrepancy among local knowledge due to model heterogeneity, leading to ambiguous representation on the server and inevitable accuracy degradation. To tackle this issue, we propose a proxy-data-free FD algorithm based on distributed knowledge congruence (FedDKC). FedDKC leverages well-designed refinement strategies to narrow local knowledge differences into an acceptable upper bound, so as to mitigate the negative effects of knowledge incongruence. Specifically, from perspectives of peak probability and Shannon entropy of local knowledge, we design kernel-based knowledge refinement (KKR) and searching-based knowledge refinement (SKR) respectively, and theoretically guarantee that the refined-local knowledge can satisfy an approximately-similar distribution and be regarded as congruent. Extensive experiments conducted on three common datasets demonstrate that our proposed FedDKC significantly outperforms the state-of-the-art (accuracy boosts in 93.33% comparisons, Top-1 accuracy boosts by up to 4.38%, and Top-5 accuracy boosts by up to 10.31%) on various heterogeneous settings while evidently improving the convergence speed.
With the increasing penetration of distributed energy resources, distributed optimization algorithms have attracted significant attention for power systems applications due to their potential for superior scalability, privacy, and robustness to a single point-of-failure. The Alternating Direction Method of Multipliers (ADMM) is a popular distributed optimization algorithm; however, its convergence performance is highly dependent on the selection of penalty parameters, which are usually chosen heuristically. In this work, we use reinforcement learning (RL) to develop an adaptive penalty parameter selection policy for the AC optimal power flow (ACOPF) problem solved via ADMM with the goal of minimizing the number of iterations until convergence. We train our RL policy using deep Q-learning, and show that this policy can result in significantly accelerated convergence (up to a 59% reduction in the number of iterations compared to existing, curvature-informed penalty parameter selection methods). Furthermore, we show that our RL policy demonstrates promise for generalizability, performing well under unseen loading schemes as well as under unseen losses of lines and generators (up to a 50% reduction in iterations). This work thus provides a proof-of-concept for using RL for parameter selection in ADMM for power systems applications.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.