亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Differentially private (DP) mechanisms protect individual-level information by introducing randomness into the statistical analysis procedure. Despite the availability of numerous DP tools, there remains a lack of general techniques for conducting statistical inference under DP. We examine a DP bootstrap procedure that releases multiple private bootstrap estimates to infer the sampling distribution and construct confidence intervals (CIs). Our privacy analysis presents new results on the privacy cost of a single DP bootstrap estimate, applicable to any DP mechanisms, and identifies some misapplications of the bootstrap in the existing literature. Using the Gaussian-DP (GDP) framework (Dong et al.,2022), we show that the release of $B$ DP bootstrap estimates from mechanisms satisfying $(\mu/\sqrt{(2-2/\mathrm{e})B})$-GDP asymptotically satisfies $\mu$-GDP as $B$ goes to infinity. Moreover, we use deconvolution with the DP bootstrap estimates to accurately infer the sampling distribution, which is novel in DP. We derive CIs from our density estimate for tasks such as population mean estimation, logistic regression, and quantile regression, and we compare them to existing methods using simulations and real-world experiments on 2016 Canada Census data. Our private CIs achieve the nominal coverage level and offer the first approach to private inference for quantile regression.

相關內容

Privatized text rewriting with local differential privacy (LDP) is a recent approach that enables sharing of sensitive textual documents while formally guaranteeing privacy protection to individuals. However, existing systems face several issues, such as formal mathematical flaws, unrealistic privacy guarantees, privatization of only individual words, as well as a lack of transparency and reproducibility. In this paper, we propose a new system 'DP-BART' that largely outperforms existing LDP systems. Our approach uses a novel clipping method, iterative pruning, and further training of internal representations which drastically reduces the amount of noise required for DP guarantees. We run experiments on five textual datasets of varying sizes, rewriting them at different privacy guarantees and evaluating the rewritten texts on downstream text classification tasks. Finally, we thoroughly discuss the privatized text rewriting approach and its limitations, including the problem of the strict text adjacency constraint in the LDP paradigm that leads to the high noise requirement.

Tabular data sharing serves as a common method for data exchange. However, sharing sensitive information without adequate privacy protection can compromise individual privacy. Thus, ensuring privacy-preserving data sharing is crucial. Differential privacy (DP) is regarded as the gold standard in data privacy. Despite this, current DP methods tend to generate privacy-preserving tabular datasets that often suffer from limited practical utility due to heavy perturbation and disregard for the tables' utility dynamics. Besides, there has not been much research on selective attribute release, particularly in the context of controlled partially perturbed data sharing. This has significant implications for scenarios such as cross-agency data sharing in real-world situations. We introduce OptimShare: a utility-focused, multi-criteria solution designed to perturb input datasets selectively optimized for specific real-world applications. OptimShare combines the principles of differential privacy, fuzzy logic, and probability theory to establish an integrated tool for privacy-preserving data sharing. Empirical assessments confirm that OptimShare successfully strikes a balance between better data utility and robust privacy, effectively serving various real-world problem scenarios.

Threshold signatures are a fundamental cryptographic primitive used in many practical applications. As proposed by Boneh and Komlo (CRYPTO'22), TAPS is a threshold signature that is a hybrid of privacy and accountability. It enables a combiner to combine t signature shares while revealing nothing about the threshold t or signing quorum to the public and asks a tracer to track a signature to the quorum that generates it. However, TAPS has three disadvantages: it 1) structures upon a centralized model, 2) assumes that both combiner and tracer are honest, and 3) leaves the tracing unnotarized and static. In this work, we introduce Decentralized, Threshold, dynamically Accountable and Private Signature (DeTAPS) that provides decentralized combining and tracing, enhanced privacy against untrusted combiners (tracers), and notarized and dynamic tracing. Specifically, we adopt Dynamic Threshold Public-Key Encryption (DTPKE) to dynamically notarize the tracing process, design non-interactive zero knowledge proofs to achieve public verifiability of notaries, and utilize the Key-Aggregate Searchable Encryption to bridge TAPS and DTPKE so as to awaken the notaries securely and efficiently. In addition, we formalize the definitions and security requirements for DeTAPS. Then we present a generic construction and formally prove its security and privacy. To evaluate the performance, we build a prototype based on SGX2 and Ethereum.

Most prior results on differentially private stochastic gradient descent (DP-SGD) are derived under the simplistic assumption of uniform Lipschitzness, i.e., the per-sample gradients are uniformly bounded. We generalize uniform Lipschitzness by assuming that the per-sample gradients have sample-dependent upper bounds, i.e., per-sample Lipschitz constants, which themselves may be unbounded. We provide principled guidance on choosing the clip norm in DP-SGD for convex over-parameterized settings satisfying our general version of Lipschitzness when the per-sample Lipschitz constants are bounded; specifically, we recommend tuning the clip norm only till values up to the minimum per-sample Lipschitz constant. This finds application in the private training of a softmax layer on top of a deep network pre-trained on public data. We verify the efficacy of our recommendation via experiments on 8 datasets. Furthermore, we provide new convergence results for DP-SGD on convex and nonconvex functions when the Lipschitz constants are unbounded but have bounded moments, i.e., they are heavy-tailed.

Camera-based person re-identification is a heavily privacy-invading task by design, benefiting from rich visual data to match together person representations across different cameras. This high-dimensional data can then easily be used for other, perhaps less desirable, applications. We here investigate the possibility of protecting such image data against uses outside of the intended re-identification task, and introduce a differential privacy mechanism leveraging both pixelisation and colour quantisation for this purpose. We show its ability to distort images in such a way that adverse task performances are significantly reduced, while retaining high re-identification performances.

Tuning the hyperparameters of differentially private (DP) machine learning (ML) algorithms often requires use of sensitive data and this may leak private information via hyperparameter values. Recently, Papernot and Steinke (2022) proposed a certain class of DP hyperparameter tuning algorithms, where the number of random search samples is randomized itself. Commonly, these algorithms still considerably increase the DP privacy parameter $\varepsilon$ over non-tuned DP ML model training and can be computationally heavy as evaluating each hyperparameter candidate requires a new training run. We focus on lowering both the DP bounds and the computational cost of these methods by using only a random subset of the sensitive data for the hyperparameter tuning and by extrapolating the optimal values to a larger dataset. We provide a R\'enyi differential privacy analysis for the proposed method and experimentally show that it consistently leads to better privacy-utility trade-off than the baseline method by Papernot and Steinke.

In this paper, we identify that the classic Gaussian mechanism and its variants for differential privacy all suffer from \textbf{the curse of full-rank covariance matrices}, and hence the expected accuracy losses of these mechanisms applied to high dimensional query results, e.g., in $\mathbb{R}^M$, all increase linearly with $M$. To lift this curse, we design a Rank-1 Singular Multivariate Gaussian Mechanism (R1SMG). It achieves $(\epsilon,\delta)$-DP on query results in $\mathbb{R}^M$ by perturbing the results with noise following a singular multivariate Gaussian distribution, whose covariance matrix is a \textbf{randomly} generated rank-1 positive semi-definite matrix. In contrast, the classic Gaussian mechanism and its variants all consider \textbf{deterministic} full-rank covariance matrices. Our idea is motivated by a clue from Dwork et al.'s work on Gaussian mechanism that has been ignored in the literature: when projecting multivariate Gaussian noise with a full-rank covariance matrix onto a set of orthonormal basis in $\mathbb{R}^M$, only the coefficient of a single basis can contribute to the privacy guarantee. This paper makes the following technical contributions. (i) R1SMG achieves $(\epsilon,\delta)$-DP guarantee on query results in $\mathbb{R}^M$, while the magnitude of the additive noise decreases with $M$. Therefore, \textbf{less is more}, i.e., less amount of noise is able to sanitize higher dimensional query results. When $M\rightarrow \infty$, the expected accuracy loss converges to ${2(\Delta_2f)^2}/{\epsilon}$, where $\Delta_2f$ is the $l_2$ sensitivity of the query function $f$. (ii) Compared with other mechanisms, R1SMG is less likely to generate noise with large magnitude that overwhelms the query results, because the kurtosis and skewness of the nondeterministic accuracy loss introduced by R1SMG is larger than that introduced by other mechanisms.

Machine learning models are increasingly used in high-stakes decision-making systems. In such applications, a major concern is that these models sometimes discriminate against certain demographic groups such as individuals with certain race, gender, or age. Another major concern in these applications is the violation of the privacy of users. While fair learning algorithms have been developed to mitigate discrimination issues, these algorithms can still leak sensitive information, such as individuals' health or financial records. Utilizing the notion of differential privacy (DP), prior works aimed at developing learning algorithms that are both private and fair. However, existing algorithms for DP fair learning are either not guaranteed to converge or require full batch of data in each iteration of the algorithm to converge. In this paper, we provide the first stochastic differentially private algorithm for fair learning that is guaranteed to converge. Here, the term "stochastic" refers to the fact that our proposed algorithm converges even when minibatches of data are used at each iteration (i.e. stochastic optimization). Our framework is flexible enough to permit different fairness notions, including demographic parity and equalized odds. In addition, our algorithm can be applied to non-binary classification tasks with multiple (non-binary) sensitive attributes. As a byproduct of our convergence analysis, we provide the first utility guarantee for a DP algorithm for solving nonconvex-strongly concave min-max problems. Our numerical experiments show that the proposed algorithm consistently offers significant performance gains over the state-of-the-art baselines, and can be applied to larger scale problems with non-binary target/sensitive attributes.

Differential private optimization for nonconvex smooth objective is considered. In the previous work, the best known utility bound is $\widetilde O(\sqrt{d}/(n\varepsilon_\mathrm{DP}))$ in terms of the squared full gradient norm, which is achieved by Differential Private Gradient Descent (DP-GD) as an instance, where $n$ is the sample size, $d$ is the problem dimensionality and $\varepsilon_\mathrm{DP}$ is the differential privacy parameter. To improve the best known utility bound, we propose a new differential private optimization framework called \emph{DIFF2 (DIFFerential private optimization via gradient DIFFerences)} that constructs a differential private global gradient estimator with possibly quite small variance based on communicated \emph{gradient differences} rather than gradients themselves. It is shown that DIFF2 with a gradient descent subroutine achieves the utility of $\widetilde O(d^{2/3}/(n\varepsilon_\mathrm{DP})^{4/3})$, which can be significantly better than the previous one in terms of the dependence on the sample size $n$. To the best of our knowledge, this is the first fundamental result to improve the standard utility $\widetilde O(\sqrt{d}/(n\varepsilon_\mathrm{DP}))$ for nonconvex objectives. Additionally, a more computational and communication efficient subroutine is combined with DIFF2 and its theoretical analysis is also given. Numerical experiments are conducted to validate the superiority of DIFF2 framework.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

北京阿比特科技有限公司