In this paper, we introduce the concept of Density-Balanced Subset in a matroid, in which independent sets can be sampled so as to guarantee that (i) each element has the same probability to be sampled, and (ii) those events are negatively correlated. These Density-Balanced Subsets are subsets in the ground set of a matroid in which the traditional notion of uniform random sampling can be extended. We then provide an application of this concept to the Matroid-Constrained Maximum Coverage problem. In this problem, given a matroid $\mathcal{M} = (V, \mathcal{I})$ of rank $k$ on a ground set $V$ and a coverage function $f$ on $V$, the goal is to find an independent set $S \in \mathcal{I}$ maximizing $f(S)$. This problem is an important special case of the much-studied submodular function maximization problem subject to a matroid constraint; this is also a generalization of the maximum $k$-cover problem in a graph. In this paper, assuming that the coverage function has a bounded frequency $\mu$ (i.e., any element of the underlying universe of the coverage function appears in at most $\mu$ sets), we design a procedure, parameterized by some integer $\rho$, to extract in polynomial time an approximate kernel of size $\rho \cdot k$ that is guaranteed to contain a $1 - (\mu - 1)/\rho$ approximation of the optimal solution. This procedure can then be used to get a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) providing a $1 - \varepsilon$ approximation in time $(\mu/\varepsilon)^{O(k)} \cdot |V|^{O(1)}$. This generalizes and improves the results of [Manurangsi, 2019] and [Huang and Sellier, 2022], providing the first FPT-AS working on an arbitrary matroid. Moreover, because of its simplicity, the kernel construction can be performed in the streaming setting.
In this paper we propose a method for defending against an eavesdropper that uses a Deep Neural Network (DNN) for learning the modulation of wireless communication signals. Our method is based on manipulating the emitted waveform with the aid of a continuous time frequency-modulated (FM) obfuscating signal that is mixed with the modulated data. The resulting waveform allows a legitimate receiver (LRx) to demodulate the data but it increases the test error of a pre-trained or adversarially-trained DNN classifier at the eavesdropper. The scheme works for analog modulation and digital single carrier and multi carrier orthogonal frequency division multiplexing (OFDM) waveforms, while it can implemented in frame-based wireless protocols. The results indicate that careful selection of the parameters of the obfuscating waveform can drop classification performance at the eavesdropper to less than 10% in AWGN and fading channels with no performance loss at the LRx.
In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience. RepE places population-level representations, rather than neurons or circuits, at the center of analysis, equipping us with novel methods for monitoring and manipulating high-level cognitive phenomena in deep neural networks (DNNs). We provide baselines and an initial analysis of RepE techniques, showing that they offer simple yet effective solutions for improving our understanding and control of large language models. We showcase how these methods can provide traction on a wide range of safety-relevant problems, including honesty, harmlessness, power-seeking, and more, demonstrating the promise of top-down transparency research. We hope that this work catalyzes further exploration of RepE and fosters advancements in the transparency and safety of AI systems.
Generative Adversarial Networks (GANs) can produce high-quality samples, but do not provide an estimate of the probability density around the samples. However, it has been noted that maximizing the log-likelihood within an energy-based setting can lead to an adversarial framework where the discriminator provides unnormalized density (often called energy). We further develop this perspective, incorporate importance sampling, and show that 1) Wasserstein GAN performs a biased estimate of the partition function, and we propose instead to use an unbiased estimator; and 2) when optimizing for likelihood, one must maximize generator entropy. This is hypothesized to provide a better mode coverage. Different from previous works, we explicitly compute the density of the generated samples. This is the key enabler to designing an unbiased estimator of the partition function and computation of the generator entropy term. The generator density is obtained via a new type of flow network, called one-way flow network, that is less constrained in terms of architecture, as it does not require a tractable inverse function. Our experimental results show that our method converges faster, produces comparable sample quality to GANs with similar architecture, successfully avoids over-fitting to commonly used datasets and produces smooth low-dimensional latent representations of the training data.
In this paper, we investigate the problem of offline Preference-based Reinforcement Learning (PbRL) with human feedback where feedback is available in the form of preference between trajectory pairs rather than explicit rewards. Our proposed algorithm consists of two main steps: (1) estimate the implicit reward using Maximum Likelihood Estimation (MLE) with general function approximation from offline data and (2) solve a distributionally robust planning problem over a confidence set around the MLE. We consider the general reward setting where the reward can be defined over the whole trajectory and provide a novel guarantee that allows us to learn any target policy with a polynomial number of samples, as long as the target policy is covered by the offline data. This guarantee is the first of its kind with general function approximation. To measure the coverage of the target policy, we introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability coefficient. We also establish lower bounds that highlight the necessity of such concentrability and the difference from standard RL, where state-action-wise rewards are directly observed. We further extend and analyze our algorithm when the feedback is given over action pairs.
In this paper, we present efficient quantum algorithms that are exponentially faster than classical algorithms for solving the quantum optimal control problem. This problem involves finding the control variable that maximizes a physical quantity at time $T$, where the system is governed by a time-dependent Schr\"odinger equation. This type of control problem also has an intricate relation with machine learning. Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm. We also provide a comprehensive error analysis to quantify the total error from various steps, such as the finite-dimensional representation of the control function, the discretization of the Schr\"odinger equation, the numerical quadrature, and optimization. Our quantum algorithms require fault-tolerant quantum computers.
In this paper, we investigate the problem of prediction confidence in face and kinship verification. Most existing face and kinship verification methods focus on accuracy performance while ignoring confidence estimation for their prediction results. However, confidence estimation is essential for modeling reliability and trustworthiness in such high-risk tasks. To address this, we introduce an effective confidence measure that allows verification models to convert a similarity score into a confidence score for any given face pair. We further propose a confidence-calibrated approach, termed Angular Scaling Calibration (ASC). ASC is easy to implement and can be readily applied to existing verification models without model modifications, yielding accuracy-preserving and confidence-calibrated probabilistic verification models. In addition, we introduce the uncertainty in the calibrated confidence to boost the reliability and trustworthiness of the verification models in the presence of noisy data. To the best of our knowledge, our work presents the first comprehensive confidence-calibrated solution for modern face and kinship verification tasks. We conduct extensive experiments on four widely used face and kinship verification datasets, and the results demonstrate the effectiveness of our proposed approach. Code and models are available at //github.com/cnulab/ASC.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax