亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decentralized multi-agent reinforcement learning (MARL) algorithms have become popular in the literature since it allows heterogeneous agents to have their own reward functions as opposed to canonical multi-agent Markov Decision Process (MDP) settings which assume common reward functions over all agents. In this work, we follow the existing work on collaborative MARL where agents in a connected time varying network can exchange information among each other in order to reach a consensus. We introduce vulnerabilities in the consensus updates of existing MARL algorithms where agents can deviate from their usual consensus update, who we term as adversarial agents. We then proceed to provide an algorithm that allows non-adversarial agents to reach a consensus in the presence of adversaries under a constrained setting.

相關內容

While language models are powerful and versatile, they often fail to address highly complex problems. This is because solving complex problems requires deliberate thinking, which has been only minimally guided during training. In this paper, we propose a new method called Cumulative Reasoning (CR), which employs language models in a cumulative and iterative manner to emulate human thought processes. By decomposing tasks into smaller components, \ournameb streamlines the problem-solving process, rendering it both more manageable and effective. For logical inference tasks, CR consistently outperforms existing methods with an improvement up to 9.3\%, and achieves the astonishing accuracy of 98.04\% on the curated FOLIO wiki dataset. In the context of the Game of 24, CR achieves an accuracy of 94\%, which signifies a substantial enhancement of 20\% over the previous state-of-the-art method.

Quotient regularization models (QRMs) are a class of powerful regularization techniques that have gained considerable attention in recent years, due to their ability to handle complex and highly nonlinear data sets. However, the nonconvex nature of QRM poses a significant challenge in finding its optimal solution. We are interested in scenarios where both the numerator and the denominator of QRM are absolutely one-homogeneous functions, which is widely applicable in the fields of signal processing and image processing. In this paper, we utilize a gradient flow to minimize such QRM in combination with a quadratic data fidelity term. Our scheme involves solving a convex problem iteratively.The convergence analysis is conducted on a modified scheme in a continuous formulation, showing the convergence to a stationary point. Numerical experiments demonstrate the effectiveness of the proposed algorithm in terms of accuracy, outperforming the state-of-the-art QRM solvers.

Automatic fake news detection with machine learning can prevent the dissemination of false statements before they gain many views. Several datasets labeling statements as legitimate or false have been created since the 2016 United States presidential election for the prospect of training machine learning models. We evaluate the robustness of both traditional and deep state-of-the-art models to gauge how well they may perform in the real world. We find that traditional models tend to generalize better to data outside the distribution it was trained on compared to more recently-developed large language models, though the best model to use may depend on the specific task at hand.

The development of deep learning based image representation learning (IRL) methods has attracted great attention for various image understanding problems. Most of these methods require the availability of a high quantity and quality of annotated training images, which can be time-consuming and costly to gather. To reduce labeling costs, crowdsourced data, automatic labeling procedures or citizen science projects can be considered. However, such approaches increase the risk of including label noise in training data. It may result in overfitting on noisy labels when discriminative reasoning is employed. This leads to sub-optimal learning procedures, and thus inaccurate characterization of images. To address this, we introduce a generative reasoning integrated label noise robust deep representation learning (GRID) approach. Our approach aims to model the complementary characteristics of discriminative and generative reasoning for IRL under noisy labels. To this end, we first integrate generative reasoning into discriminative reasoning through a supervised variational autoencoder. This allows GRID to automatically detect training samples with noisy labels. Then, through our label noise robust hybrid representation learning strategy, GRID adjusts the whole learning procedure for IRL of these samples through generative reasoning and that of other samples through discriminative reasoning. Our approach learns discriminative image representations while preventing interference of noisy labels independently from the IRL method being selected. Thus, unlike the existing methods, GRID does not depend on the type of annotation, neural network architecture, loss function or learning task, and thus can be directly utilized for various problems. Experimental results show its effectiveness compared to state-of-the-art methods. The code of GRID is publicly available at //github.com/gencersumbul/GRID.

Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control. However, it poses a challenging multi-task reinforcement learning problem, as the optimal policy may be quite different across robots and critically depend on the morphology. Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies, but pay little attention to the dependency of a robot's control policy on its morphology context. In this paper, we propose a hierarchical architecture to better model this dependency via contextual modulation, which includes two key submodules: (1) Instead of enforcing hard parameter sharing across robots, we use hypernetworks to generate morphology-dependent control parameters; (2) We propose a fixed attention mechanism that solely depends on the morphology to modulate the interactions between different limbs in a robot. Experimental results show that our method not only improves learning performance on a diverse set of training robots, but also generalizes better to unseen morphologies in a zero-shot fashion.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司