亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rise of hardware accelerators with custom instructions necessitates custom compiler backends supporting these accelerators. This study provides detailed analyses of LLVM and its RISC-V backend, supplemented with case studies providing end-to-end overview of the mentioned transformations. We discuss that instruction design should consider both hardware and software design space. The necessary compiler modifications may mean that the instruction is not well designed and need to be reconsidered. We discuss that RISC-V standard extensions provide exemplary instructions that can guide instruction designers. In this study, the process of adding a custom instruction to compiler is split into two parts as Assembler support and pattern matching support. Without pattern matching support, conventional software requires manual entries of inline Assembly for the accelerator which is not scalable. While it is trivial to add Assembler support regardless of the instruction semantics, pattern matching support is on the contrary. Pattern matching support and choosing the right stage for the modification, requires the knowledge of the internal transformations in the compiler. This study delves deep into pattern matching and presents multiple ways to approach the problem of pattern matching support. It is discussed that depending on the pattern's complexity, higher level transformations, e.g. IR level, can be more maintainable compared to Instruction Selection phase.

相關內容

 編譯器(Compiler),是一種計算機程序,它會將用某種編程語言寫成的源代碼(原始語言),轉換成另一種編程語言(目標語言)。

Solving partially observable Markov decision processes (POMDPs) with high dimensional and continuous observations, such as camera images, is required for many real life robotics and planning problems. Recent researches suggested machine learned probabilistic models as observation models, but their use is currently too computationally expensive for online deployment. We deal with the question of what would be the implication of using simplified observation models for planning, while retaining formal guarantees on the quality of the solution. Our main contribution is a novel probabilistic bound based on a statistical total variation distance of the simplified model. We show that it bounds the theoretical POMDP value w.r.t. original model, from the empirical planned value with the simplified model, by generalizing recent results of particle-belief MDP concentration bounds. Our calculations can be separated into offline and online parts, and we arrive at formal guarantees without having to access the costly model at all during planning, which is also a novel result. Finally, we demonstrate in simulation how to integrate the bound into the routine of an existing continuous online POMDP solver.

The widely used multiobjective optimizer NSGA-II was recently proven to have considerable difficulties in many-objective optimization. In contrast, experimental results in the literature show a good performance of the SMS-EMOA, which can be seen as a steady-state NSGA-II that uses the hypervolume contribution instead of the crowding distance as the second selection criterion. This paper conducts the first rigorous runtime analysis of the SMS-EMOA for many-objective optimization. To this aim, we first propose a many-objective counterpart, the m-objective mOJZJ problem, of the bi-objective OJZJ benchmark, which is the first many-objective multimodal benchmark used in a mathematical runtime analysis. We prove that SMS-EMOA computes the full Pareto front of this benchmark in an expected number of $O(M^2 n^k)$ iterations, where $n$ denotes the problem size (length of the bit-string representation), $k$ the gap size (a difficulty parameter of the problem), and $M=(2n/m-2k+3)^{m/2}$ the size of the Pareto front. This result together with the existing negative result on the original NSGA-II shows that in principle, the general approach of the NSGA-II is suitable for many-objective optimization, but the crowding distance as tie-breaker has deficiencies. We obtain three additional insights on the SMS-EMOA. Different from a recent result for the bi-objective OJZJ benchmark, the stochastic population update often does not help for mOJZJ. It results in a $1/\Theta(\min\{Mk^{1/2}/2^{k/2},1\})$ speed-up, which is $\Theta(1)$ for large $m$ such as $m>k$. On the positive side, we prove that heavy-tailed mutation still results in a speed-up of order $k^{0.5+k-\beta}$. Finally, we conduct the first runtime analyses of the SMS-EMOA on the bi-objective OneMinMax and LOTZ benchmarks and show that it has a performance comparable to the GSEMO and the NSGA-II.

Efficiently computing spatio-textual queries has become increasingly important in various applications that need to quickly retrieve geolocated entities associated with textual information, such as in location-based services and social networks. To accelerate such queries, several works have proposed combining spatial and textual indices into hybrid index structures. Recently, the novel idea of replacing traditional indices with ML models has attracted a lot of attention. This includes works on learned spatial indices, where the main challenge is to address the lack of a total ordering among objects in a multidimensional space. In this work, we investigate how to extend this novel type of index design to the case of spatio-textual data. We study different design choices, based on either loose or tight coupling between the spatial and textual part, as well as a hybrid index that combines a traditional and a learned component. We also perform an experimental evaluation using several real-world datasets to assess the potential benefits of using a learned index for evaluating spatio-textual queries.

As the number and complexity of malware attacks continue to increase, there is an urgent need for effective malware detection systems. While deep learning models are effective at detecting malware, they are vulnerable to adversarial attacks. Attacks like this can create malicious files that are resistant to detection, creating a significant cybersecurity risk. Recent research has seen the development of several adversarial attack and response approaches aiming at strengthening deep learning models' resilience to such attacks. This survey study offers an in-depth look at current research in adversarial attack and defensive strategies for malware classification in cybersecurity. The methods are classified into four categories: generative models, feature-based approaches, ensemble methods, and hybrid tactics. The article outlines cutting-edge procedures within each area, assessing their benefits and drawbacks. Each topic presents cutting-edge approaches and explores their advantages and disadvantages. In addition, the study discusses the datasets and assessment criteria that are often utilized on this subject. Finally, it identifies open research difficulties and suggests future study options. This document is a significant resource for malware categorization and cyber security researchers and practitioners.

Moir\'e patterns frequently appear when capturing screens with smartphones or cameras, potentially compromising image quality. Previous studies suggest that moir\'e pattern elimination in the RAW domain offers greater efficiency compared to demoir\'eing in the sRGB domain. Nevertheless, relying solely on raw data for image demoir\'eing is insufficient in mitigating color cast due to the absence of essential information required for color correction by the Image Signal Processor (ISP). In this paper, we propose perform Image Demoir\'eing concurrently utilizing both RAW and sRGB data (RRID), which is readily accessible in both smartphones and digital cameras. We develop Skip-Connection-based Demoir\'eing Module (SCDM) with specific modules embeded in skip-connections for the efficient and effective demoir\'eing of RAW and sRGB features, respectively. Subsequently, we propose RGB Guided Image Signal Processor (RGISP) to incorporate color information from coarsely demoir\'ed sRGB features during the ISP stage, assisting the process of color recovery. Extensive experiments demonstrate that our RRID outperforms state-of-the-art approaches by 0.62dB in PSNR and 0.003 in SSIM, exhibiting superior performance both in moir\'e pattern removal and color cast correction.

In streaming settings, speech recognition models have to map sub-sequences of speech to text before the full audio stream becomes available. However, since alignment information between speech and text is rarely available during training, models need to learn it in a completely self-supervised way. In practice, the exponential number of possible alignments makes this extremely challenging, with models often learning peaky or sub-optimal alignments. Prima facie, the exponential nature of the alignment space makes it difficult to even quantify the uncertainty of a model's alignment distribution. Fortunately, it has been known for decades that the entropy of a probabilistic finite state transducer can be computed in time linear to the size of the transducer via a dynamic programming reduction based on semirings. In this work, we revisit the entropy semiring for neural speech recognition models, and show how alignment entropy can be used to supervise models through regularization or distillation. We also contribute an open-source implementation of CTC and RNN-T in the semiring framework that includes numerically stable and highly parallel variants of the entropy semiring. Empirically, we observe that the addition of alignment distillation improves the accuracy and latency of an already well-optimized teacher-student distillation model, achieving state-of-the-art performance on the Librispeech dataset in the streaming scenario.

AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司