亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the domain of music and sound processing, pitch extraction plays a pivotal role. Our research presents a specialized convolutional neural network designed for pitch extraction, particularly from the human singing voice in acapella performances. Notably, our approach combines synthetic data with auto-labeled acapella sung audio, creating a robust training environment. Evaluation across datasets comprising synthetic sounds, opera recordings, and time-stretched vowels demonstrates its efficacy. This work paves the way for enhanced pitch extraction in both music and voice settings.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We propose MusicRL, the first music generation system finetuned from human feedback. Appreciation of text-to-music models is particularly subjective since the concept of musicality as well as the specific intention behind a caption are user-dependent (e.g. a caption such as "upbeat work-out music" can map to a retro guitar solo or a techno pop beat). Not only this makes supervised training of such models challenging, but it also calls for integrating continuous human feedback in their post-deployment finetuning. MusicRL is a pretrained autoregressive MusicLM (Agostinelli et al., 2023) model of discrete audio tokens finetuned with reinforcement learning to maximise sequence-level rewards. We design reward functions related specifically to text-adherence and audio quality with the help from selected raters, and use those to finetune MusicLM into MusicRL-R. We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences. Using Reinforcement Learning from Human Feedback (RLHF), we train MusicRL-U, the first text-to-music model that incorporates human feedback at scale. Human evaluations show that both MusicRL-R and MusicRL-U are preferred to the baseline. Ultimately, MusicRL-RU combines the two approaches and results in the best model according to human raters. Ablation studies shed light on the musical attributes influencing human preferences, indicating that text adherence and quality only account for a part of it. This underscores the prevalence of subjectivity in musical appreciation and calls for further involvement of human listeners in the finetuning of music generation models.

In daily life, we encounter a variety of sounds, both desirable and undesirable, with limited control over their presence and volume. Our work introduces "Listen, Chat, and Edit" (LCE), a novel multimodal sound mixture editor that modifies each sound source in a mixture based on user-provided text instructions. LCE distinguishes itself with a user-friendly chat interface and its unique ability to edit multiple sound sources simultaneously within a mixture, without needing to separate them. Users input open-vocabulary text prompts, which are interpreted by a large language model to create a semantic filter for editing the sound mixture. The system then decomposes the mixture into its components, applies the semantic filter, and reassembles it into the desired output. We developed a 160-hour dataset with over 100k mixtures, including speech and various audio sources, along with text prompts for diverse editing tasks like extraction, removal, and volume control. Our experiments demonstrate significant improvements in signal quality across all editing tasks and robust performance in zero-shot scenarios with varying numbers and types of sound sources.

Recent text-to-video diffusion models have achieved impressive progress. In practice, users often desire the ability to control object motion and camera movement independently for customized video creation. However, current methods lack the focus on separately controlling object motion and camera movement in a decoupled manner, which limits the controllability and flexibility of text-to-video models. In this paper, we introduce Direct-a-Video, a system that allows users to independently specify motions for one or multiple objects and/or camera movements, as if directing a video. We propose a simple yet effective strategy for the decoupled control of object motion and camera movement. Object motion is controlled through spatial cross-attention modulation using the model's inherent priors, requiring no additional optimization. For camera movement, we introduce new temporal cross-attention layers to interpret quantitative camera movement parameters. We further employ an augmentation-based approach to train these layers in a self-supervised manner on a small-scale dataset, eliminating the need for explicit motion annotation. Both components operate independently, allowing individual or combined control, and can generalize to open-domain scenarios. Extensive experiments demonstrate the superiority and effectiveness of our method. Project page: //direct-a-video.github.io/.

Explainable AI (XAI) aids in deciphering 'black-box' models. While several methods have been proposed and evaluated primarily in the image domain, the exploration of explainability in the text domain remains a growing research area. In this paper, we delve into the applicability of XAI methods for the text domain. In this context, the 'Similarity Difference and Uniqueness' (SIDU) XAI method, recognized for its superior capability in localizing entire salient regions in image-based classification is extended to textual data. The extended method, SIDU-TXT, utilizes feature activation maps from 'black-box' models to generate heatmaps at a granular, word-based level, thereby providing explanations that highlight contextually significant textual elements crucial for model predictions. Given the absence of a unified standard for assessing XAI methods, this study applies a holistic three-tiered comprehensive evaluation framework: Functionally-Grounded, Human-Grounded and Application-Grounded, to assess the effectiveness of the proposed SIDU-TXT across various experiments. We find that, in sentiment analysis task of a movie review dataset, SIDU-TXT excels in both functionally and human-grounded evaluations, demonstrating superior performance through quantitative and qualitative analyses compared to benchmarks like Grad-CAM and LIME. In the application-grounded evaluation within the sensitive and complex legal domain of asylum decision-making, SIDU-TXT and Grad-CAM demonstrate comparable performances, each with its own set of strengths and weaknesses. However, both methods fall short of entirely fulfilling the sophisticated criteria of expert expectations, highlighting the imperative need for additional research in XAI methods suitable for such domains.

Augmenting large language models (LLMs) to understand audio -- including non-speech sounds and non-verbal speech -- is critically important for diverse real-world applications of LLMs. In this paper, we propose Audio Flamingo, a novel audio language model with 1) strong audio understanding abilities, 2) the ability to quickly adapt to unseen tasks via in-context learning and retrieval, and 3) strong multi-turn dialogue abilities. We introduce a series of training techniques, architecture design, and data strategies to enhance our model with these abilities. Extensive evaluations across various audio understanding tasks confirm the efficacy of our method, setting new state-of-the-art benchmarks.

Employee well-being is a critical concern in the contemporary workplace, as highlighted by the American Psychological Association's 2021 report, indicating that 71% of employees experience stress or tension. This stress contributes significantly to workplace attrition and absenteeism, with 61% of attrition and 16% of sick days attributed to poor mental health. A major challenge for employers is that employees often remain unaware of their mental health issues until they reach a crisis point, resulting in limited utilization of corporate well-being benefits. This research addresses this challenge by presenting a groundbreaking stress detection algorithm that provides real-time support preemptively. Leveraging automated chatbot technology, the algorithm objectively measures mental health levels by analyzing chat conversations, offering personalized treatment suggestions in real-time based on linguistic biomarkers. The study explores the feasibility of integrating these innovations into practical learning applications within real-world contexts and introduces a chatbot-style system integrated into the broader employee experience platform. This platform, encompassing various features, aims to enhance overall employee well-being, detect stress in real time, and proactively engage with individuals to improve support effectiveness, demonstrating a 22% increase when assistance is provided early. Overall, the study emphasizes the importance of fostering a supportive workplace environment for employees' mental health.

Generating rich and controllable motion is a pivotal challenge in video synthesis. We propose Boximator, a new approach for fine-grained motion control. Boximator introduces two constraint types: hard box and soft box. Users select objects in the conditional frame using hard boxes and then use either type of boxes to roughly or rigorously define the object's position, shape, or motion path in future frames. Boximator functions as a plug-in for existing video diffusion models. Its training process preserves the base model's knowledge by freezing the original weights and training only the control module. To address training challenges, we introduce a novel self-tracking technique that greatly simplifies the learning of box-object correlations. Empirically, Boximator achieves state-of-the-art video quality (FVD) scores, improving on two base models, and further enhanced after incorporating box constraints. Its robust motion controllability is validated by drastic increases in the bounding box alignment metric. Human evaluation also shows that users favor Boximator generation results over the base model.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.

北京阿比特科技有限公司