The Crouzeix--Raviart finite element method is widely recognized in the field of finite element analysis due to its nonconforming nature. The main goal of this paper is to present a general strategy for enhancing the Crouzeix--Raviart finite element using quadratic polynomial functions and three additional general degrees of freedom. To achieve this, we present a characterization result on the enriched degrees of freedom, enabling to define a new enriched finite element. This general approach is employed to introduce two distinct admissible families of enriched degrees of freedom. Numerical results demonstrate an enhancement in the accuracy of the proposed method when compared to the standard Crouzeix--Raviart finite element, confirming the effectiveness of the proposed enrichment strategy.
We propose a high precision algorithm for solving the Gelfand-Levitan-Marchenko equation. The algorithm is based on the block version of the Toeplitz Inner-Bordering algorithm of Levinson's type. To approximate integrals, we use the high-precision one-sided and two-sided Gregory quadrature formulas. Also we use the Woodbury formula to construct a computational algorithm. This makes it possible to use the almost Toeplitz structure of the matrices for the fast calculations.
Overdamped Langevin dynamics are reversible stochastic differential equations which are commonly used to sample probability measures in high-dimensional spaces, such as the ones appearing in computational statistical physics and Bayesian inference. By varying the diffusion coefficient, there are in fact infinitely many overdamped Langevin dynamics which are reversible with respect to the target probability measure at hand. This suggests to optimize the diffusion coefficient in order to increase the convergence rate of the dynamics, as measured by the spectral gap of the generator associated with the stochastic differential equation. We analytically study this problem here, obtaining in particular necessary conditions on the optimal diffusion coefficient. We also derive an explicit expression of the optimal diffusion in some appropriate homogenized limit. Numerical results, both relying on discretizations of the spectral gap problem and Monte Carlo simulations of the stochastic dynamics, demonstrate the increased quality of the sampling arising from an appropriate choice of the diffusion coefficient.
The aim of this article is to derive discontinuous finite elements vector spaces which can be put in a discrete de-Rham complex for which an harmonic gap property may be proven. First, discontinuous finite element spaces inspired by classical N{\'e}d{\'e}lec or Raviart-Thomas conforming space are considered, and we prove that by relaxing the normal or tangential constraint, discontinuous spaces ensuring the harmonic gap property can be built. Then the triangular case is addressed, for which we prove that such a property holds for the classical discontinuous finite element space for vectors. On Cartesian meshes, this result does not hold for the classical discontinuous finite element space for vectors. We then show how to use the de-Rham complex found for triangular meshes for enriching the finite element space on Cartesian meshes in order to recover a de-Rham complex, on which the same harmonic gap property is proven.
This paper analyses conforming and nonconforming virtual element formulations of arbitrary polynomial degrees on general polygonal meshes for the coupling of solid and fluid phases in deformable porous plates. The governing equations consist of one fourth-order equation for the transverse displacement of the middle surface coupled with a second-order equation for the pressure head relative to the solid with mixed boundary conditions. We propose novel enrichment operators that connect nonconforming virtual element spaces of general degree to continuous Sobolev spaces. These operators satisfy additional orthogonal and best-approximation properties (referred to as a conforming companion operator in the context of finite element methods), which play an important role in the nonconforming methods. This paper proves a priori error estimates in the best-approximation form, and derives residual--based reliable and efficient a posteriori error estimates in appropriate norms, and shows that these error bounds are robust with respect to the main model parameters. The computational examples illustrate the numerical behaviour of the suggested virtual element discretisations and confirm the theoretical findings on different polygonal meshes with mixed boundary conditions.
The energy dissipation law and the maximum bound principle are two critical physical properties of the Allen--Cahn equations. While many existing time-stepping methods are known to preserve the energy dissipation law, most apply to a modified form of energy. In this work, we demonstrate that, when the nonlinear term of the Allen--Cahn equation is Lipschitz continuous, a class of arbitrarily high-order exponential time differencing Runge--Kutta (ETDRK) schemes preserve the original energy dissipation property, under a mild step-size constraint. Additionally, we guarantee the Lipschitz condition on the nonlinear term by applying a rescaling post-processing technique, which ensures that the numerical solution unconditionally satisfies the maximum bound principle. Consequently, our proposed schemes maintain both the original energy dissipation law and the maximum bound principle and can achieve arbitrarily high-order accuracy. We also establish an optimal error estimate for the proposed schemes. Some numerical experiments are carried out to verify our theoretical results.
Solving Fluid-Structure Interaction (FSI) problems using traditional methods is a big challenge in the field of numerical simulation. As a powerful multi-physical field coupled library, preCICE has a bright application prospect for solving FSI, which supports many open/closed source software and commercial CFD solvers to solve FSI problems in the form of a black box. However, this library currently only supports mesh-based coupling schemes. This paper proposes a critical grid (mesh) as an intermediate medium for the particle method to connect a bidirectional coupling tool named preCICE. The particle and critical mesh are used to interpolate the displacement and force so that the pure Lagrangian Smoothed Particle Hydrodynamic (SPH) method can also solve the FSI problem. This method is called the particle mesh coupling (PMC) method, which theoretically solves the mesh mismatch problem based on the particle method to connect preCICE. In addition, we conduct experiments to verify the performance of the PMC method, in which the fluid and the structure is discretized by SPH and the Finite Element Method (FEM), respectively. The results show that the PMC method given in this paper is effective for solving FSI problems. Finally, our source code for the SPH fluid adapter is open-source and available on GitHub for further developing preCICE compatibility with more meshless methods.
We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.
We propose a local discontinuous Galerkin (LDG) method for fractional Korteweg-de Vries equation involving the fractional Laplacian with exponent $\alpha\in (1,2)$ in one and two space dimensions. By decomposing the fractional Laplacian into a first order derivative and a fractional integral, we prove $L^2$-stability of the semi-discrete LDG scheme incorporating suitable interface and boundary fluxes. We analyze the error estimate by considering linear convection term and utilizing the estimate, we derive the error estimate for general nonlinear flux and demonstrate an order of convergence $\mathcal{O}(h^{k+1/2})$. Moreover, the stability and error analysis have been extended to multiple space dimensional case. Additionally, we devise a fully discrete LDG scheme using the four-stage fourth-order Runge-Kutta method. We prove that the scheme is strongly stable under an appropriate time step constraint by establishing a \emph{three-step strong stability} estimate. Numerical illustrations are shown to demonstrate the efficiency of the scheme by obtaining an optimal order of convergence.
We introduce a nonconforming hybrid finite element method for the two-dimensional vector Laplacian, based on a primal variational principle for which conforming methods are known to be inconsistent. Consistency is ensured using penalty terms similar to those used to stabilize hybridizable discontinuous Galerkin (HDG) methods, with a carefully chosen penalty parameter due to Brenner, Li, and Sung [Math. Comp., 76 (2007), pp. 573-595]. Our method accommodates elements of arbitrarily high order and, like HDG methods, it may be implemented efficiently using static condensation. The lowest-order case recovers the $P_1$-nonconforming method of Brenner, Cui, Li, and Sung [Numer. Math., 109 (2008), pp. 509-533], and we show that higher-order convergence is achieved under appropriate regularity assumptions. The analysis makes novel use of a family of weighted Sobolev spaces, due to Kondrat'ev, for domains admitting corner singularities.
Quantum hypothesis testing (QHT) has been traditionally studied from the information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of samples of an unknown state. In this paper, we study the sample complexity of QHT, wherein the goal is to determine the minimum number of samples needed to reach a desired error probability. By making use of the wealth of knowledge that already exists in the literature on QHT, we characterize the sample complexity of binary QHT in the symmetric and asymmetric settings, and we provide bounds on the sample complexity of multiple QHT. In more detail, we prove that the sample complexity of symmetric binary QHT depends logarithmically on the inverse error probability and inversely on the negative logarithm of the fidelity. As a counterpart of the quantum Stein's lemma, we also find that the sample complexity of asymmetric binary QHT depends logarithmically on the inverse type II error probability and inversely on the quantum relative entropy. We then provide lower and upper bounds on the sample complexity of multiple QHT, with it remaining an intriguing open question to improve these bounds. The final part of our paper outlines and reviews how sample complexity of QHT is relevant to a broad swathe of research areas and can enhance understanding of many fundamental concepts, including quantum algorithms for simulation and search, quantum learning and classification, and foundations of quantum mechanics. As such, we view our paper as an invitation to researchers coming from different communities to study and contribute to the problem of sample complexity of QHT, and we outline a number of open directions for future research.