亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we reconsider two new iterative methods for solving absolute value equations (AVE), which is proposed by Ali and Pan (Jpn. J. Ind. Appl. Math. 40: 303--314, 2023). Convergence results of the two iterative schemes and new sufficient conditions for the unique solvability of AVE are presented. In addition, for a special case, the optimal iteration parameters of the two algorithms are analyzed, respectively. Numerical results demonstrate our claims.

相關內容

In this paper, conditional stability estimates are derived for unique continuation and Cauchy problems associated to the Poisson equation in ultra-weak variational form. Numerical approximations are obtained as minima of regularized least squares functionals. The arising dual norms are replaced by discretized dual norms, which leads to a mixed formulation in terms of trial- and test-spaces. For stable pairs of such spaces, and a proper choice of the regularization parameter, the $L_2$-error on a subdomain in the obtained numerical approximation can be bounded by the best possible fractional power of the sum of the data error and the error of best approximation. Compared to the use of a standard variational formulation, the latter two errors are measured in weaker norms. To avoid the use of $C^1$-finite element test spaces, nonconforming finite element test spaces can be applied as well. They either lead to the qualitatively same error bound, or in a simplified version, to such an error bound modulo an additional data oscillation term. Numerical results illustrate our theoretical findings.

In a previous publication, we introduced an abstract logic via an abstract notion of quantifier. Drawing upon concepts from categorical logic, this abstract logic interprets formulas from context as subobjects in a specific category, e.g., Cartesian, regular, or coherent categories, Grothendieck, or elementary toposes. We proposed an entailment system formulated as a sequent calculus which we proved complete. Building on this foundation, our current work explores model theory within abstract logic. More precisely, we generalize one of the most important and powerful classical model theory methods, namely the ultraproduct method, and show its fundamental theorem, i.e., Los's theorem. The result is shown as independently as possible of a given quantifier.

In this paper, we effectively solve the inverse source problem of the fractional Poisson equation using MC-fPINNs. We construct two neural networks $ u_{NN}(x;\theta )$ and $f_{NN}(x;\psi)$ to approximate the solution $u^{*}(x)$ and the forcing term $f^{*}(x)$ of the fractional Poisson equation. To optimize these two neural networks, we use the Monte Carlo sampling method mentioned in MC-fPINNs and define a new loss function combining measurement data and the underlying physical model. Meanwhile, we present a comprehensive error analysis for this method, along with a prior rule to select the appropriate parameters of neural networks. Several numerical examples are given to demonstrate the great precision and robustness of this method in solving high-dimensional problems up to 10D, with various fractional order $\alpha$ and different noise levels of the measurement data ranging from 1$\%$ to 10$\%$.

In this work, we use the monolithic convex limiting (MCL) methodology to enforce relevant inequality constraints in implicit finite element discretizations of the compressible Euler equations. In this context, preservation of invariant domains follows from positivity preservation for intermediate states of the density and internal energy. To avoid spurious oscillations, we additionally impose local maximum principles on intermediate states of the density, velocity components, and specific total energy. For the backward Euler time stepping, we show the invariant domain preserving (IDP) property of the fully discrete MCL scheme by constructing a fixed-point iteration that is IDP and converges under a strong time step restriction. Our iterative solver for the nonlinear discrete problem employs a more efficient fixed-point iteration. The matrix of the associated linear system is a robust low-order Jacobian approximation that exploits the homogeneity property of the flux function. The limited antidiffusive terms are treated explicitly. We use positivity preservation as a stopping criterion for nonlinear iterations. The first iteration yields the solution of a linearized semi-implicit problem. This solution possesses the discrete conservation property but is generally not IDP. Further iterations are performed if any non-IDP states are detected. The existence of an IDP limit is guaranteed by our analysis. To facilitate convergence to steady-state solutions, we perform adaptive explicit underrelaxation at the end of each time step. The calculation of appropriate relaxation factors is based on an approximate minimization of nodal entropy residuals. The performance of proposed algorithms and alternative solution strategies is illustrated by the convergence history for standard two-dimensional test problems.

In this paper, we introduce a randomized algorithm for solving the non-symmetric eigenvalue problem, referred to as randomized Implicitly Restarted Arnoldi (rIRA). This method relies on using a sketch-orthogonal basis during the Arnoldi process while maintaining the Arnoldi relation and exploiting a restarting scheme to focus on a specific part of the spectrum. We analyze this method and show that it retains useful properties of the Implicitly Restarted Arnoldi (IRA) method, such as restarting without adding errors to the Ritz pairs and implicitly applying polynomial filtering. Experiments are presented to validate the numerical efficiency of the proposed randomized eigenvalue solver.

A finite element method is introduced to track interface evolution governed by the level set equation. The method solves for the level set indicator function in a narrow band around the interface. An extension procedure, which is essential for a narrow band level set method, is introduced based on a finite element $L^2$- or $H^1$-projection combined with the ghost-penalty method. This procedure is formulated as a linear variational problem in a narrow band around the surface, making it computationally efficient and suitable for rigorous error analysis. The extension method is combined with a discontinuous Galerkin space discretization and a BDF time-stepping scheme. The paper analyzes the stability and accuracy of the extension procedure and evaluates the performance of the resulting narrow band finite element method for the level set equation through numerical experiments.

We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish $L^2$ stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The $L^2$ estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.

We propose a new full discretization of the Biot's equations in poroelasticity. The construction is driven by the inf-sup theory, which we recently developed. It builds upon the four-field formulation of the equations obtained by introducing the total pressure and the total fluid content. We discretize in space with Lagrange finite elements and in time with backward Euler. We establish inf-sup stability and quasi-optimality of the proposed discretization, with robust constants with respect to all material parameters. We further construct an interpolant showing how the error decays for smooth solutions.

We analyze the two-field formulation of the quasi-static Biot's equations by means of the inf-sup theory. For this purpose, we exploit an equivalent four-field formulation of the equations, introducing the so-called total pressure and total fluid content as independent variables. We establish existence, uniqueness and stability of the solution. Our stability estimate is two-sided and robust, meaning that the regularity established for the solution matches the regularity requirements for the data and the involved constants are independent of all material parameters. We prove also that additional regularity in space of the data implies, in some cases, corresponding additional regularity in space of the solution. These results are instrumental to the design and the analysis of discretizations enjoying accurate stability and error estimates.

In this paper, we propose a novel shape optimization approach for the source identification of elliptic equations. This identification problem arises from two application backgrounds: actuator placement in PDE-constrained optimal controls and the regularized least-squares formulation of source identifications. The optimization problem seeks both the source strength and its support. By eliminating the variable associated with the source strength, we reduce the problem to a shape optimization problem for a coupled elliptic system, known as the first-order optimality system. As a model problem, we derive the shape derivative for the regularized least-squares formulation of the inverse source problem and propose a gradient descent shape optimization algorithm, implemented using the level-set method. Several numerical experiments are presented to demonstrate the efficiency of our proposed algorithms.

北京阿比特科技有限公司