This work is devoted to the theoretical and numerical analysis of a two-species chemotaxis- Navier-Stokes system with Lotka-Volterra competitive kinetics in a bounded domain of Rd, d = 2, 3. First, we study the existence of global weak solutions and establish a regularity criterion which provides sufficient conditions to ensure the strong regularity of the weak solutions. After, we propose a finite element numerical scheme in which we use a splitting technique obtained by introducing an auxiliary variable given by the gradient of the chemical concentration and applying an inductive strategy, in order to deal with the chemoattraction terms in the two-species equations and prove optimal error estimates. For this scheme, we study the well-posedness and derive some uniform estimates for the discrete variables required in the convergence analysis. Finally, we present some numerical simulations oriented to verify the good behavior of our scheme, as well as to check numerically the optimal error estimates proved in our theoretical analysis.
Theoretically, the conditional expectation of a square-integrable random variable $Y$ given a $d$-dimensional random vector $X$ can be obtained by minimizing the mean squared distance between $Y$ and $f(X)$ over all Borel measurable functions $f \colon \mathbb{R}^d \to \mathbb{R}$. However, in many applications this minimization problem cannot be solved exactly, and instead, a numerical method that computes an approximate minimum over a suitable subfamily of Borel functions has to be used. The quality of the result depends on the adequacy of the subfamily and the performance of the numerical method. In this paper, we derive an expected value representation of the minimal mean square distance which in many applications can efficiently be approximated with a standard Monte Carlo average. This enables us to provide guarantees for the accuracy of any numerical approximation of a given conditional expectation. We illustrate the method by assessing the quality of approximate conditional expectations obtained by linear, polynomial as well as neural network regression in different concrete examples.
In this paper, we formulate and study substructuring type algorithm for the Cahn-Hilliard (CH) equation, which was originally proposed to describe the phase separation phenomenon for binary melted alloy below the critical temperature and since then it has appeared in many fields ranging from tumour growth simulation, image processing, thin liquid films, population dynamics etc. Being a non-linear equation, it is important to develop robust numerical techniques to solve the CH equation. Here we present the formulation of Dirichlet-Neumann (DN) and Neumann-Neumann (NN) methods applied to CH equation and study their convergence behaviour. We consider the domain-decomposition based DN and NN methods in one and two space dimension for two subdomains and extend the study for multi-subdomain setting for NN method. We verify our findings with numerical results.
In this paper we apply divergence measures to empirical likelihood applied to logistic regression models. We define a family of empirical test statistics based on divergence measures, called empirical phi-divergence test statistics, extending the empirical likelihood ratio test. We study the asymptotic distribution of these empirical test statistics, showing that it is the same for all the test statistics in this family, and the same as the classical empirical likelihood ratio test. Next, we study the power function for the members in this family, showing that the empirical phi-divergence tests introduced in the paper are consistent in the Fraser sense. In order to compare the differences in behavior among the empirical phi-divergence test statistics in this new family, considered for the first time in this paper, we carry out a simulation study.
Bayesian supervised predictive classifiers, hypothesis testing, and parametric estimation under Partition Exchangeability are implemented. The two classifiers presented are the marginal classifier (that assumes test data is i.i.d.) next to a more computationally costly but accurate simultaneous classifier (that finds a labelling for the entire test dataset at once based on simultanous use of all the test data to predict each label). We also provide the Maximum Likelihood Estimation (MLE) of the only underlying parameter of the partition exchangeability generative model as well as hypothesis testing statistics for equality of this parameter with a single value, alternative, or multiple samples. We present functions to simulate the sequences from Ewens Sampling Formula as the realisation of the Poisson-Dirichlet distribution and their respective probabilities.
A matrix formalism for the determination of the best estimator in certain simulation-based parameter estimation problems will be presented and discussed. The equations, termed as the Linear Template Fit, combine a linear regression with a least square method and its optimization. The Linear Template Fit employs only predictions that are calculated beforehand and which are provided for a few values of the parameter of interest. Therefore, the Linear Template Fit is particularly suited for parameter estimation with computationally intensive simulations that are otherwise often limited in their usability for statistical inference, or for performance critical applications. Equations for error propagation are discussed, and the analytic form provides comprehensive insights into the parameter estimation problem. Furthermore, the quickly-converging algorithm of the Quadratic Template Fit will be presented, which is suitable for a non-linear dependence on the parameters. As an example application, a determination of the strong coupling constant, $\alpha_s(m_Z)$, from inclusive jet cross section data at the CERN Large Hadron Collider is studied and compared with previously published results.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.
In multi-task learning, a learner is given a collection of prediction tasks and needs to solve all of them. In contrast to previous work, which required that annotated training data is available for all tasks, we consider a new setting, in which for some tasks, potentially most of them, only unlabeled training data is provided. Consequently, to solve all tasks, information must be transferred between tasks with labels and tasks without labels. Focusing on an instance-based transfer method we analyze two variants of this setting: when the set of labeled tasks is fixed, and when it can be actively selected by the learner. We state and prove a generalization bound that covers both scenarios and derive from it an algorithm for making the choice of labeled tasks (in the active case) and for transferring information between the tasks in a principled way. We also illustrate the effectiveness of the algorithm by experiments on synthetic and real data.