亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Digital twin (DT) systems aim to create virtual replicas of physical objects that are updated in real time with their physical counterparts and evolve alongside the physical assets throughout its lifecycle. Transportation systems are poised to significantly benefit from this new paradigm. In particular, DT technology can augment the capabilities of intelligent transportation systems. However, the development and deployment of networkwide transportation DT systems need to take into consideration the scale and dynamic nature of future connected and automated transportation systems. Motivated by the need of understanding the requirements and challenges involved in developing and implementing such systems, this paper proposes a hierarchical concept for a Transportation DT (TDT) system starting from individual transportation assets and building up to the entire networkwide TDT. A reference architecture is proposed for TDT systems that could be used as a guide in developing TDT systems at any scale within the presented hierarchical concept. In addition, several use cases are presented based upon the reference architecture which illustrate the utility of a TDT system from transportation safety, mobility and environmental applications perspective. This is followed by a review of current studies in the domain of TDT systems. Finally, the critical challenges and promising future research directions in TDT are discussed to overcome existing barriers to realize a safe and operationally efficient connected and automated transportation systems.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

The traditional user-centered design process can hardly keep up with the ever faster technical development and increasingly diverse user preferences. As a solution, we propose to augment the tried-and-tested approach of conducting user studies with simulation and optimization of the entire human-computer interaction loop. This approach allows to better understand phenomena through explicit modeling, build virtual prototypes through simulation, and improve interaction techniques through optimization. Building predictive user models also supports the creation and validation of HCI theories, and constitutes a decisive step towards new, intelligent, and adaptive user interfaces. We report our experience in virtually developing new interaction techniques on the example of acoustic levitation, and present our optimization-based framework for HCI. With this, we strive to gain a better understanding of interaction and at the same time feed the discussion on questions such as which tools and tutorials are necessary to make virtual prototyping more accessible to different audiences.

This review paper presents a comprehensive overview of end-to-end deep learning frameworks used in the context of autonomous navigation, including obstacle detection, scene perception, path planning, and control. The paper aims to bridge the gap between autonomous navigation and deep learning by analyzing recent research studies and evaluating the implementation and testing of deep learning methods. It emphasizes the importance of navigation for mobile robots, autonomous vehicles, and unmanned aerial vehicles, while also acknowledging the challenges due to environmental complexity, uncertainty, obstacles, dynamic environments, and the need to plan paths for multiple agents. The review highlights the rapid growth of deep learning in engineering data science and its development of innovative navigation methods. It discusses recent interdisciplinary work related to this field and provides a brief perspective on the limitations, challenges, and potential areas of growth for deep learning methods in autonomous navigation. Finally, the paper summarizes the findings and practices at different stages, correlating existing and future methods, their applicability, scalability, and limitations. The review provides a valuable resource for researchers and practitioners working in the field of autonomous navigation and deep learning.

In this big data era, it is hard for the current generation to find the right data from the huge amount of data contained within online platforms. In such a situation, there is a need for an information filtering system that might help them find the information they are looking for. In recent years, a research field has emerged known as recommender systems. Recommenders have become important as they have many real-life applications. This paper reviews the different techniques and developments of recommender systems in e-commerce, e-tourism, e-resources, e-government, e-learning, and e-library. By analyzing recent work on this topic, we will be able to provide a detailed overview of current developments and identify existing difficulties in recommendation systems. The final results give practitioners and researchers the necessary guidance and insights into the recommendation system and its application.

Trustworthy artificial intelligence (AI) technology has revolutionized daily life and greatly benefited human society. Among various AI technologies, Federated Learning (FL) stands out as a promising solution for diverse real-world scenarios, ranging from risk evaluation systems in finance to cutting-edge technologies like drug discovery in life sciences. However, challenges around data isolation and privacy threaten the trustworthiness of FL systems. Adversarial attacks against data privacy, learning algorithm stability, and system confidentiality are particularly concerning in the context of distributed training in federated learning. Therefore, it is crucial to develop FL in a trustworthy manner, with a focus on security, robustness, and privacy. In this survey, we propose a comprehensive roadmap for developing trustworthy FL systems and summarize existing efforts from three key aspects: security, robustness, and privacy. We outline the threats that pose vulnerabilities to trustworthy federated learning across different stages of development, including data processing, model training, and deployment. To guide the selection of the most appropriate defense methods, we discuss specific technical solutions for realizing each aspect of Trustworthy FL (TFL). Our approach differs from previous work that primarily discusses TFL from a legal perspective or presents FL from a high-level, non-technical viewpoint.

There has been on-going philosophical debate on whether artificial life models, also known as digital organisms, are truly alive. The main difficulty appears to be finding an encompassing and definite definition of life. By examining similarities and differences in recent definitions of life, we define life as "any system with a boundary to confine the system within a definite volume and protect the system from external effects, consisting of a program that is capable of improvisation, able to react and adapt to the environment, able to regenerate parts of it-self or its entirety, with energy system comprises of non-interference sets of secluded reactions for self-sustenance, is considered alive or a living system. Any incomplete system containing a program and can be re-assembled into a living system; thereby, converting the reassembled system for the purpose of the incomplete system, are also considered alive." Using this definition, we argue that digital organisms may not be the boundary case of life even though some digital organisms are not considered alive; thereby, taking the view that some form of digital organisms can be considered alive. In addition, we present an experimental framework based on continuity of the overall system and potential discontinuity of elements within the system for testing future definitions of life.

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

This paper presents a succinct review of attempts in the literature to use game theory to model decision making scenarios relevant to defence applications. Game theory has been proven as a very effective tool in modelling decision making processes of intelligent agents, entities, and players. It has been used to model scenarios from diverse fields such as economics, evolutionary biology, and computer science. In defence applications, there is often a need to model and predict actions of hostile actors, and players who try to evade or out-smart each other. Modelling how the actions of competitive players shape the decision making of each other is the forte of game theory. In past decades, there have been several studies which applied different branches of game theory to model a range of defence-related scenarios. This paper provides a structured review of such attempts, and classifies existing literature in terms of the kind of warfare modelled, the types of game used, and the players involved. The presented analysis provides a concise summary about the state-of-the-art with regards to the use of game theory in defence applications, and highlights the benefits and limitations of game theory in the considered scenarios.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司