We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.
Multimodal machine learning is a core research area spanning the language, visual and acoustic modalities. The central challenge in multimodal learning involves learning representations that can process and relate information from multiple modalities. In this paper, we propose two methods for unsupervised learning of joint multimodal representations using sequence to sequence (Seq2Seq) methods: a \textit{Seq2Seq Modality Translation Model} and a \textit{Hierarchical Seq2Seq Modality Translation Model}. We also explore multiple different variations on the multimodal inputs and outputs of these seq2seq models. Our experiments on multimodal sentiment analysis using the CMU-MOSI dataset indicate that our methods learn informative multimodal representations that outperform the baselines and achieve improved performance on multimodal sentiment analysis, specifically in the Bimodal case where our model is able to improve F1 Score by twelve points. We also discuss future directions for multimodal Seq2Seq methods.
The emerging technique of deep learning has been widely applied in many different areas. However, when adopted in a certain specific domain, this technique should be combined with domain knowledge to improve efficiency and accuracy. In particular, when analyzing the applications of deep learning in sentiment analysis, we found that the current approaches are suffering from the following drawbacks: (i) the existing works have not paid much attention to the importance of different types of sentiment terms, which is an important concept in this area; and (ii) the loss function currently employed does not well reflect the degree of error of sentiment misclassification. To overcome such problem, we propose to combine domain knowledge with deep learning. Our proposal includes using sentiment scores, learnt by regression, to augment training data; and introducing penalty matrix for enhancing the loss function of cross entropy. When experimented, we achieved a significant improvement in classification results.
Starting with the idea that sentiment analysis models should be able to predict not only positive or negative but also other psychological states of a person, we implement a sentiment analysis model to investigate the relationship between the model and emotional state. We first examine psychological measurements of 64 participants and ask them to write a book report about a story. After that, we train our sentiment analysis model using crawled movie review data. We finally evaluate participants' writings, using the pretrained model as a concept of transfer learning. The result shows that sentiment analysis model performs good at predicting a score, but the score does not have any correlation with human's self-checked sentiment.
Sentiment Analysis in Arabic is a challenging task due to the rich morphology of the language. Moreover, the task is further complicated when applied to Twitter data that is known to be highly informal and noisy. In this paper, we develop a hybrid method for sentiment analysis for Arabic tweets for a specific Arabic dialect which is the Saudi Dialect. Several features were engineered and evaluated using a feature backward selection method. Then a hybrid method that combines a corpus-based and lexicon-based method was developed for several classification models (two-way, three-way, four-way). The best F1-score for each of these models was (69.9,61.63,55.07) respectively.
Sentiment analysis is a key component in various text mining applications. Numerous sentiment classification techniques, including conventional and deep learning-based methods, have been proposed in the literature. In most existing methods, a high-quality training set is assumed to be given. Nevertheless, constructing a high-quality training set that consists of highly accurate labels is challenging in real applications. This difficulty stems from the fact that text samples usually contain complex sentiment representations, and their annotation is subjective. We address this challenge in this study by leveraging a new labeling strategy and utilizing a two-level long short-term memory network to construct a sentiment classifier. Lexical cues are useful for sentiment analysis, and they have been utilized in conventional studies. For example, polar and privative words play important roles in sentiment analysis. A new encoding strategy, that is, $\rho$-hot encoding, is proposed to alleviate the drawbacks of one-hot encoding and thus effectively incorporate useful lexical cues. We compile three Chinese data sets on the basis of our label strategy and proposed methodology. Experiments on the three data sets demonstrate that the proposed method outperforms state-of-the-art algorithms.
Sentiment analysis is proven to be very useful tool in many applications regarding social media. This has led to a great surge of research in this field. Hence, in this paper, we compile the baselines for such research. In this paper, we explore three different deep-learning based architectures for multimodal sentiment classification, each improving upon the previous. Further, we evaluate these architectures with multiple datasets with fixed train/test partition. We also discuss some major issues, frequently ignored in multimodal sentiment analysis research, e.g., role of speaker-exclusive models, importance of different modalities, and generalizability. This framework illustrates the different facets of analysis to be considered while performing multimodal sentiment analysis and, hence, serves as a new benchmark for future research in this emerging field. We draw a comparison among the methods using empirical data, obtained from the experiments. In the future, we plan to focus on extracting semantics from visual features, cross-modal features and fusion.
The complexities of Arabic language in morphology, orthography and dialects makes sentiment analysis for Arabic more challenging. Also, text feature extraction from short messages like tweets, in order to gauge the sentiment, makes this task even more difficult. In recent years, deep neural networks were often employed and showed very good results in sentiment classification and natural language processing applications. Word embedding, or word distributing approach, is a current and powerful tool to capture together the closest words from a contextual text. In this paper, we describe how we construct Word2Vec models from a large Arabic corpus obtained from ten newspapers in different Arab countries. By applying different machine learning algorithms and convolutional neural networks with different text feature selections, we report improved accuracy of sentiment classification (91%-95%) on our publicly available Arabic language health sentiment dataset [1]. Keywords - Arabic Sentiment Analysis, Machine Learning, Convolutional Neural Networks, Word Embedding, Word2Vec for Arabic, Lexicon.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.
Sentiment Analysis (SA) is a major field of study in natural language processing, computational linguistics and information retrieval. Interest in SA has been constantly growing in both academia and industry over the recent years. Moreover, there is an increasing need for generating appropriate resources and datasets in particular for low resource languages including Persian. These datasets play an important role in designing and developing appropriate opinion mining platforms using supervised, semi-supervised or unsupervised methods. In this paper, we outline the entire process of developing a manually annotated sentiment corpus, SentiPers, which covers formal and informal written contemporary Persian. To the best of our knowledge, SentiPers is a unique sentiment corpus with such a rich annotation in three different levels including document-level, sentence-level, and entity/aspect-level for Persian. The corpus contains more than 26000 sentences of users opinions from digital product domain and benefits from special characteristics such as quantifying the positiveness or negativity of an opinion through assigning a number within a specific range to any given sentence. Furthermore, we present statistics on various components of our corpus as well as studying the inter-annotator agreement among the annotators. Finally, some of the challenges that we faced during the annotation process will be discussed as well.
This project addresses the problem of sentiment analysis in twitter; that is classifying tweets according to the sentiment expressed in them: positive, negative or neutral. Twitter is an online micro-blogging and social-networking platform which allows users to write short status updates of maximum length 140 characters. It is a rapidly expanding service with over 200 million registered users - out of which 100 million are active users and half of them log on twitter on a daily basis - generating nearly 250 million tweets per day. Due to this large amount of usage we hope to achieve a reflection of public sentiment by analysing the sentiments expressed in the tweets. Analysing the public sentiment is important for many applications such as firms trying to find out the response of their products in the market, predicting political elections and predicting socioeconomic phenomena like stock exchange. The aim of this project is to develop a functional classifier for accurate and automatic sentiment classification of an unknown tweet stream.