亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robust estimation is a crucial and still challenging task, which involves estimating model parameters in noisy environments. Although conventional sampling consensus-based algorithms sample several times to achieve robustness, these algorithms cannot use data features and historical information effectively. In this paper, we propose RLSAC, a novel Reinforcement Learning enhanced SAmple Consensus framework for end-to-end robust estimation. RLSAC employs a graph neural network to utilize both data and memory features to guide exploring directions for sampling the next minimum set. The feedback of downstream tasks serves as the reward for unsupervised training. Therefore, RLSAC can avoid differentiating to learn the features and the feedback of downstream tasks for end-to-end robust estimation. In addition, RLSAC integrates a state transition module that encodes both data and memory features. Our experimental results demonstrate that RLSAC can learn from features to gradually explore a better hypothesis. Through analysis, it is apparent that RLSAC can be easily transferred to other sampling consensus-based robust estimation tasks. To the best of our knowledge, RLSAC is also the first method that uses reinforcement learning to sample consensus for end-to-end robust estimation. We release our codes at //github.com/IRMVLab/RLSAC.

相關內容

Interpretability and human oversight are fundamental pillars of deploying complex NLP models into real-world applications. However, applying explainability and human-in-the-loop methods requires technical proficiency. Despite existing toolkits for model understanding and analysis, options to integrate human feedback are still limited. We propose IFAN, a framework for real-time explanation-based interaction with NLP models. Through IFAN's interface, users can provide feedback to selected model explanations, which is then integrated through adapter layers to align the model with human rationale. We show the system to be effective in debiasing a hate speech classifier with minimal impact on performance. IFAN also offers a visual admin system and API to manage models (and datasets) as well as control access rights. A demo is live at //ifan.ml.

Discovering potential failures of an autonomous system is important prior to deployment. Falsification-based methods are often used to assess the safety of such systems, but the cost of running many accurate simulation can be high. The validation can be accelerated by identifying critical failure scenarios for the system under test and by reducing the simulation runtime. We propose a Bayesian approach that integrates meta-learning strategies with a multi-armed bandit framework. Our method involves learning distributions over scenario parameters that are prone to triggering failures in the system under test, as well as a distribution over fidelity settings that enable fast and accurate simulations. In the spirit of meta-learning, we also assess whether the learned fidelity settings distribution facilitates faster learning of the scenario parameter distributions for new scenarios. We showcase our methodology using a cutting-edge 3D driving simulator, incorporating 16 fidelity settings for an autonomous vehicle stack that includes camera and lidar sensors. We evaluate various scenarios based on an autonomous vehicle pre-crash typology. As a result, our approach achieves a significant speedup, up to 18 times faster compared to traditional methods that solely rely on a high-fidelity simulator.

Uncertainty is prevalent in engineering design, statistical learning, and decision making broadly. Due to inherent risk-averseness and ambiguity about assumptions, it is common to address uncertainty by formulating and solving conservative optimization models expressed using measures of risk and related concepts. We survey the rapid development of risk measures over the last quarter century. From their beginning in financial engineering, we recount the spread to nearly all areas of engineering and applied mathematics. Solidly rooted in convex analysis, risk measures furnish a general framework for handling uncertainty with significant computational and theoretical advantages. We describe the key facts, list several concrete algorithms, and provide an extensive list of references for further reading. The survey recalls connections with utility theory and distributionally robust optimization, points to emerging applications areas such as fair machine learning, and defines measures of reliability.

Overload situations, in the presence of resource limitations, in complex event processing (CEP) systems are typically handled using load shedding to maintain a given latency bound. However, load shedding might negatively impact the quality of results (QoR). To minimize the shedding impact on QoR, CEP researchers propose shedding approaches that drop events/internal state with the lowest importances/utilities. In both black-box and white-box shedding approaches, different features are used to predict these utilities. In this work, we propose a novel black-box shedding approach that uses a new set of features to drop events from the input event stream to maintain a given latency bound. Our approach uses a probabilistic model to predict these event utilities. Moreover, our approach uses Zobrist hashing and well-known machine learning models, e.g., decision trees and random forests, to handle the predicted event utilities. Through extensive evaluations on several synthetic and two real-world datasets and a representative set of CEP queries, we show that, in the majority of cases, our load shedding approach outperforms state-of-the-art black-box load shedding approaches, w.r.t. QoR.

Taxation and government spending are crucial tools for governments to promote economic growth and maintain social equity. However, the difficulty in accurately predicting the dynamic strategies of diverse self-interested households presents a challenge for governments to implement effective tax policies. Given its proficiency in modeling other agents in partially observable environments and adaptively learning to find optimal policies, Multi-Agent Reinforcement Learning (MARL) is highly suitable for solving dynamic games between the government and numerous households. Although MARL shows more potential than traditional methods such as the genetic algorithm and dynamic programming, there is a lack of large-scale multi-agent reinforcement learning economic simulators. Therefore, we propose a MARL environment, named \textbf{TaxAI}, for dynamic games involving $N$ households, government, firms, and financial intermediaries based on the Bewley-Aiyagari economic model. Our study benchmarks 2 traditional economic methods with 7 MARL methods on TaxAI, demonstrating the effectiveness and superiority of MARL algorithms. Moreover, TaxAI's scalability in simulating dynamic interactions between the government and 10,000 households, coupled with real-data calibration, grants it a substantial improvement in scale and reality over existing simulators. Therefore, TaxAI is the most realistic economic simulator, which aims to generate feasible recommendations for governments and individuals.

Metastable failure is a recent abstraction of a pattern of failures that occurs frequently in real-world distributed storage systems. In this paper, we propose a formal analysis and modeling of metastable failures in replicated storage systems. We focus on a foundational problem in distributed systems -- the problem of consensus -- to have an impact on a large class of systems. Our main contribution is the development of a queuing-based analytical model, MSF-Model, that can be used to characterize and predict metastable failures. MSF-Model integrates novel modeling concepts that allow modeling metastable failures which was interactable to model prior to our work. We also perform real experiments to reproduce and validate our model. Our real experiments show that MSF-Model predicts metastable failures with high accuracy by comparing the real experiment with the predictions from the queuing-based model.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whole source image with recurrent convolutional neural network (RCNN). Then several stacked deconvolutional layers are adopted to get the multi-scale feature representation and obtain a series of saliency maps. Finally, we investigate a fusion convolution module (FCM) to build a final pixel level saliency map. The proposed model is extensively evaluated on four salient object detection benchmark datasets. Results show that our deep model significantly outperforms other 12 state-of-the-art approaches.

北京阿比特科技有限公司