亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion Probabilistic Models (DPMs) have demonstrated substantial promise in image generation tasks but heavily rely on the availability of large amounts of training data. Previous works, like GANs, have tackled the limited data problem by transferring pre-trained models learned with sufficient data. However, those methods are hard to be utilized in DPMs since the distinct differences between DPM-based and GAN-based methods, showing in the unique iterative denoising process integral and the need for many timesteps with no-targeted noise in DPMs. In this paper, we propose a novel DPMs-based transfer learning method, TAN, to address the limited data problem. It includes two strategies: similarity-guided training, which boosts transfer with a classifier, and adversarial noise selection which adaptive chooses targeted noise based on the input image. Extensive experiments in the context of few-shot image generation tasks demonstrate that our method is not only efficient but also excels in terms of image quality and diversity when compared to existing GAN-based and DDPM-based methods.

相關內容

Monte Carlo Tree Search (MCTS) algorithms such as AlphaGo and MuZero have achieved superhuman performance in many challenging tasks. However, the computational complexity of MCTS-based algorithms is influenced by the size of the search space. To address this issue, we propose a novel probability tree state abstraction (PTSA) algorithm to improve the search efficiency of MCTS. A general tree state abstraction with path transitivity is defined. In addition, the probability tree state abstraction is proposed for fewer mistakes during the aggregation step. Furthermore, the theoretical guarantees of the transitivity and aggregation error bound are justified. To evaluate the effectiveness of the PTSA algorithm, we integrate it with state-of-the-art MCTS-based algorithms, such as Sampled MuZero and Gumbel MuZero. Experimental results on different tasks demonstrate that our method can accelerate the training process of state-of-the-art algorithms with 10%-45% search space reduction.

Despite the remarkable success of large-scale Language Models (LLMs) such as GPT-3, their performances still significantly underperform fine-tuned models in the task of text classification. This is due to (1) the lack of reasoning ability in addressing complex linguistic phenomena (e.g., intensification, contrast, irony etc); (2) limited number of tokens allowed in in-context learning. In this paper, we introduce Clue And Reasoning Prompting (CARP). CARP adopts a progressive reasoning strategy tailored to addressing the complex linguistic phenomena involved in text classification: CARP first prompts LLMs to find superficial clues (e.g., keywords, tones, semantic relations, references, etc), based on which a diagnostic reasoning process is induced for final decisions. To further address the limited-token issue, CARP uses a fine-tuned model on the supervised dataset for $k$NN demonstration search in the in-context learning, allowing the model to take the advantage of both LLM's generalization ability and the task-specific evidence provided by the full labeled dataset. Remarkably, CARP yields new SOTA performances on 4 out of 5 widely-used text-classification benchmarks, 97.39 (+1.24) on SST-2, 96.40 (+0.72) on AGNews, 98.78 (+0.25) on R8 and 96.95 (+0.6) on R52, and a performance comparable to SOTA on MR (92.39 v.s. 93.3). More importantly, we find that CARP delivers impressive abilities on low-resource and domain-adaptation setups. Specifically, using 16 examples per class, CARP achieves comparable performances to supervised models with 1,024 examples per class.

The U.S. Census Bureau collects and publishes detailed demographic data about Americans which are heavily used by researchers and policymakers. The Bureau has recently adopted the framework of differential privacy in an effort to improve confidentiality of individual census responses. A key output of this privacy protection system is the Noisy Measurement File (NMF), which is produced by adding random noise to tabulated statistics. The NMF is critical to understanding any errors introduced in the data, and performing valid statistical inference on published census data. Unfortunately, the current release format of the NMF is difficult to access and work with. We describe the process we use to transform the NMF into a usable format, and provide recommendations to the Bureau for how to release future versions of the NMF. These changes are essential for ensuring transparency of privacy measures and reproducibility of scientific research built on census data.

Traditional Chinese Medicine (TCM) has a rich history of utilizing natural herbs to treat a diversity of illnesses. In practice, TCM diagnosis and treatment are highly personalized and organically holistic, requiring comprehensive consideration of the patient's state and symptoms over time. However, existing TCM recommendation approaches overlook the changes in patient status and only explore potential patterns between symptoms and prescriptions. In this paper, we propose a novel Sequential Condition Evolved Interaction Knowledge Graph (SCEIKG), a framework that treats the model as a sequential prescription-making problem by considering the dynamics of the patient's condition across multiple visits. In addition, we incorporate an interaction knowledge graph to enhance the accuracy of recommendations by considering the interactions between different herbs and the patient's condition. Experimental results on a real-world dataset demonstrate that our approach outperforms existing TCM recommendation methods, achieving state-of-the-art performance.

While large language models (LLMs) have demonstrated impressive performance on a range of decision-making tasks, they rely on simple acting processes and fall short of broad deployment as autonomous agents. We introduce LATS (Language Agent Tree Search), a general framework that synergizes the capabilities of LLMs in planning, acting, and reasoning. Drawing inspiration from Monte Carlo tree search in model-based reinforcement learning, LATS employs LLMs as agents, value functions, and optimizers, repurposing their latent strengths for enhanced decision-making. What is crucial in this method is the use of an environment for external feedback, which offers a more deliberate and adaptive problem-solving mechanism that moves beyond the limitations of existing techniques. Our experimental evaluation across diverse domains, such as programming, HotPotQA, and WebShop, illustrates the applicability of LATS for both reasoning and acting. In particular, LATS achieves 94.4\% for programming on HumanEval with GPT-4 and an average score of 75.9 for web browsing on WebShop with GPT-3.5, demonstrating the effectiveness and generality of our method.

Large-scale transformer-based models like the Bidirectional Encoder Representations from Transformers (BERT) are widely used for Natural Language Processing (NLP) applications, wherein these models are initially pre-trained with a large corpus with millions of parameters and then fine-tuned for a downstream NLP task. One of the major limitations of these large-scale models is that they cannot be deployed on resource-constrained devices due to their large model size and increased inference latency. In order to overcome these limitations, such large-scale models can be converted to an optimized FlatBuffer format, tailored for deployment on resource-constrained edge devices. Herein, we evaluate the performance of such FlatBuffer transformed MobileBERT models on three different edge devices, fine-tuned for Reputation analysis of English language tweets in the RepLab 2013 dataset. In addition, this study encompassed an evaluation of the deployed models, wherein their latency, performance, and resource efficiency were meticulously assessed. Our experiment results show that, compared to the original BERT large model, the converted and quantized MobileBERT models have 160$\times$ smaller footprints for a 4.1% drop in accuracy while analyzing at least one tweet per second on edge devices. Furthermore, our study highlights the privacy-preserving aspect of TinyML systems as all data is processed locally within a serverless environment.

Many Contrastive Learning (CL) methods train their models to be invariant to different "views" of an image input for which a good data augmentation pipeline is crucial. While considerable efforts were directed towards improving pre-text tasks, architectures, or robustness (e.g., Siamese networks or teacher-softmax centering), the majority of these methods remain strongly reliant on the random sampling of operations within the image augmentation pipeline, such as the random resized crop or color distortion operation. In this paper, we argue that the role of the view generation and its effect on performance has so far received insufficient attention. To address this, we propose an easy, learning-free, yet powerful Hard View Selection (HVS) strategy designed to extend the random view generation to expose the pretrained model to harder samples during CL training. It encompasses the following iterative steps: 1) randomly sample multiple views and create pairs of two views, 2) run forward passes for each view pair on the currently trained model, 3) adversarially select the pair yielding the worst loss, and 4) run the backward pass with the selected pair. In our empirical analysis we show that under the hood, HVS increases task difficulty by controlling the Intersection over Union of views during pretraining. With only 300-epoch pretraining, HVS is able to closely rival the 800-epoch DINO baseline which remains very favorable even when factoring in the slowdown induced by the additional forwards of HVS. Additionally, HVS consistently achieves accuracy improvements on ImageNet between 0.55% and 1.9% on linear evaluation and similar improvements on transfer tasks across multiple CL methods, such as DINO, SimSiam, and SimCLR.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

北京阿比特科技有限公司