亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep Neural Networks (DNNs) are vulnerable to adversarial examples, which causes serious threats to security-critical applications. This motivated much research on providing mechanisms to make models more robust against adversarial attacks. Unfortunately, most of these defenses, such as gradient masking, are easily overcome through different attack means. In this paper, we propose MUTEN, a low-cost method to improve the success rate of well-known attacks against gradient-masking models. Our idea is to apply the attacks on an ensemble model which is built by mutating the original model elements after training. As we found out that mutant diversity is a key factor in improving success rate, we design a greedy algorithm for generating diverse mutants efficiently. Experimental results on MNIST, SVHN, and CIFAR10 show that MUTEN can increase the success rate of four attacks by up to 0.45.

相關內容

Adversarial attacks based on randomized search schemes have obtained state-of-the-art results in black-box robustness evaluation recently. However, as we demonstrate in this work, their efficiency in different query budget regimes depends on manual design and heuristic tuning of the underlying proposal distributions. We study how this issue can be addressed by adapting the proposal distribution online based on the information obtained during the attack. We consider Square Attack, which is a state-of-the-art score-based black-box attack, and demonstrate how its performance can be improved by a learned controller that adjusts the parameters of the proposal distribution online during the attack. We train the controller using gradient-based end-to-end training on a CIFAR10 model with white box access. We demonstrate that plugging the learned controller into the attack consistently improves its black-box robustness estimate in different query regimes by up to 20% for a wide range of different models with black-box access. We further show that the learned adaptation principle transfers well to the other data distributions such as CIFAR100 or ImageNet and to the targeted attack setting.

Recent work has shown that models trained to the same objective, and which achieve similar measures of accuracy on consistent test data, may nonetheless behave very differently on individual predictions. This inconsistency is undesirable in high-stakes contexts, such as medical diagnosis and finance. We show that this inconsistent behavior extends beyond predictions to feature attributions, which may likewise have negative implications for the intelligibility of a model, and one's ability to find recourse for subjects. We then introduce selective ensembles to mitigate such inconsistencies by applying hypothesis testing to the predictions of a set of models trained using randomly-selected starting conditions; importantly, selective ensembles can abstain in cases where a consistent outcome cannot be achieved up to a specified confidence level. We prove that that prediction disagreement between selective ensembles is bounded, and empirically demonstrate that selective ensembles achieve consistent predictions and feature attributions while maintaining low abstention rates. On several benchmark datasets, selective ensembles reach zero inconsistently predicted points, with abstention rates as low 1.5%.

Machine learning has witnessed tremendous growth in its adoption and advancement in the last decade. The evolution of machine learning from traditional algorithms to modern deep learning architectures has shaped the way today's technology functions. Its unprecedented ability to discover knowledge/patterns from unstructured data and automate the decision-making process led to its application in wide domains. High flying machine learning arena has been recently pegged back by the introduction of adversarial attacks. Adversaries are able to modify data, maximizing the classification error of the models. The discovery of blind spots in machine learning models has been exploited by adversarial attackers by generating subtle intentional perturbations in test samples. Increasing dependency on data has paved the blueprint for ever-high incentives to camouflage machine learning models. To cope with probable catastrophic consequences in the future, continuous research is required to find vulnerabilities in form of adversarial and design remedies in systems. This survey aims at providing the encyclopedic introduction to adversarial attacks that are carried out against malware detection systems. The paper will introduce various machine learning techniques used to generate adversarial and explain the structure of target files. The survey will also model the threat posed by the adversary and followed by brief descriptions of widely accepted adversarial algorithms. Work will provide a taxonomy of adversarial evasion attacks on the basis of attack domain and adversarial generation techniques. Adversarial evasion attacks carried out against malware detectors will be discussed briefly under each taxonomical headings and compared with concomitant researches. Analyzing the current research challenges in an adversarial generation, the survey will conclude by pinpointing the open future research directions.

Recently, 3D deep learning models have been shown to be susceptible to adversarial attacks like their 2D counterparts. Most of the state-of-the-art (SOTA) 3D adversarial attacks perform perturbation to 3D point clouds. To reproduce these attacks in the physical scenario, a generated adversarial 3D point cloud need to be reconstructed to mesh, which leads to a significant drop in its adversarial effect. In this paper, we propose a strong 3D adversarial attack named Mesh Attack to address this problem by directly performing perturbation on mesh of a 3D object. In order to take advantage of the most effective gradient-based attack, a differentiable sample module that back-propagate the gradient of point cloud to mesh is introduced. To further ensure the adversarial mesh examples without outlier and 3D printable, three mesh losses are adopted. Extensive experiments demonstrate that the proposed scheme outperforms SOTA 3D attacks by a significant margin. We also achieved SOTA performance under various defenses. Our code is available at: //github.com/cuge1995/Mesh-Attack.

Deep neural networks are vulnerable to adversarial examples that mislead the models with imperceptible perturbations. Though adversarial attacks have achieved incredible success rates in the white-box setting, most existing adversaries often exhibit weak transferability in the black-box setting, especially under the scenario of attacking models with defense mechanisms. In this work, we propose a new method called variance tuning to enhance the class of iterative gradient based attack methods and improve their attack transferability. Specifically, at each iteration for the gradient calculation, instead of directly using the current gradient for the momentum accumulation, we further consider the gradient variance of the previous iteration to tune the current gradient so as to stabilize the update direction and escape from poor local optima. Empirical results on the standard ImageNet dataset demonstrate that our method could significantly improve the transferability of gradient-based adversarial attacks. Besides, our method could be used to attack ensemble models or be integrated with various input transformations. Incorporating variance tuning with input transformations on iterative gradient-based attacks in the multi-model setting, the integrated method could achieve an average success rate of 90.1% against nine advanced defense methods, improving the current best attack performance significantly by 85.1% . Code is available at //github.com/JHL-HUST/VT.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Person re-identification (re-ID) has attracted much attention recently due to its great importance in video surveillance. In general, distance metrics used to identify two person images are expected to be robust under various appearance changes. However, our work observes the extreme vulnerability of existing distance metrics to adversarial examples, generated by simply adding human-imperceptible perturbations to person images. Hence, the security danger is dramatically increased when deploying commercial re-ID systems in video surveillance, especially considering the highly strict requirement of public safety. Although adversarial examples have been extensively applied for classification analysis, it is rarely studied in metric analysis like person re-identification. The most likely reason is the natural gap between the training and testing of re-ID networks, that is, the predictions of a re-ID network cannot be directly used during testing without an effective metric. In this work, we bridge the gap by proposing Adversarial Metric Attack, a parallel methodology to adversarial classification attacks, which can effectively generate adversarial examples for re-ID. Comprehensive experiments clearly reveal the adversarial effects in re-ID systems. Moreover, by benchmarking various adversarial settings, we expect that our work can facilitate the development of robust feature learning with the experimental conclusions we have drawn.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

There is a rising interest in studying the robustness of deep neural network classifiers against adversaries, with both advanced attack and defence techniques being actively developed. However, most recent work focuses on discriminative classifiers, which only model the conditional distribution of the labels given the inputs. In this paper we propose the deep Bayes classifier, which improves classical naive Bayes with conditional deep generative models. We further develop detection methods for adversarial examples, which reject inputs that have negative log-likelihood under the generative model exceeding a threshold pre-specified using training data. Experimental results suggest that deep Bayes classifiers are more robust than deep discriminative classifiers, and the proposed detection methods achieve high detection rates against many recently proposed attacks.

Reinforcement learning (RL) has advanced greatly in the past few years with the employment of effective deep neural networks (DNNs) on the policy networks. With the great effectiveness came serious vulnerability issues with DNNs that small adversarial perturbations on the input can change the output of the network. Several works have pointed out that learned agents with a DNN policy network can be manipulated against achieving the original task through a sequence of small perturbations on the input states. In this paper, we demonstrate furthermore that it is also possible to impose an arbitrary adversarial reward on the victim policy network through a sequence of attacks. Our method involves the latest adversarial attack technique, Adversarial Transformer Network (ATN), that learns to generate the attack and is easy to integrate into the policy network. As a result of our attack, the victim agent is misguided to optimise for the adversarial reward over time. Our results expose serious security threats for RL applications in safety-critical systems including drones, medical analysis, and self-driving cars.

北京阿比特科技有限公司