Growing leakage and misuse of visual information raise security and privacy concerns, which promotes the development of information protection. Existing adversarial perturbations-based methods mainly focus on the de-identification against deep learning models. However, the inherent visual information of the data has not been well protected. In this work, inspired by the Type-I adversarial attack, we propose an adversarial visual information hiding method to protect the visual privacy of data. Specifically, the method generates obfuscating adversarial perturbations to obscure the visual information of the data. Meanwhile, it maintains the hidden objectives to be correctly predicted by models. In addition, our method does not modify the parameters of the applied model, which makes it flexible for different scenarios. Experimental results on the recognition and classification tasks demonstrate that the proposed method can effectively hide visual information and hardly affect the performances of models. The code is available in the supplementary material.
Relying on dependency packages accelerates software development, but it also increases the exposure to security vulnerabilities that may be present in dependencies. While developers have full control over which dependency packages (and which version) they use, they have no control over the dependencies of their dependencies. Such transitive dependencies, which often amount to a greater number than direct dependencies, can become infected with vulnerabilities and put software projects at risk. To mitigate this risk, Practitioners need to select dependencies that respond quickly to vulnerabilities to prevent the propagation of vulnerable code to their project. To identify such dependencies, we analyze more than 450 vulnerabilities in the npm ecosystem to understand why dependent packages remain vulnerable. We identify over 200,000 npm packages that are infected through their dependencies and use 9 features to build a prediction model that identifies packages that quickly adopt the vulnerability fix and prevent further propagation of vulnerabilities. We also study the relationship between these features and the response speed of vulnerable packages. We complement our work with a practitioner survey to understand the applicability of our findings. Developers can incorporate our findings into their dependency management practices to mitigate the impact of vulnerabilities from their dependency supply chain.
Defect detection is a critical research area in artificial intelligence. Recently, synthetic data-based self-supervised learning has shown great potential on this task. Although many sophisticated synthesizing strategies exist, little research has been done to investigate the robustness of models when faced with different strategies. In this paper, we focus on this issue and find that existing methods are highly sensitive to them. To alleviate this issue, we present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies across different anomaly detection benchmarks. We hypothesize that the high sensitivity to synthetic data of existing self-supervised methods arises from their heavy reliance on the visual appearance of synthetic data during decoding. In contrast, our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance. To this end, inspired by existing knowledge distillation methods, we employ a teacher-student network, which is trained based on synthesized outliers, to compute the discrepancy map as the cue. Extensive experiments on two challenging datasets prove the robustness of our method. Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance. Code is available at: //github.com/caiyuxuan1120/DAF.
We investigate the complexity of the reachability problem for (deep) neural networks: does it compute valid output given some valid input? It was recently claimed that the problem is NP-complete for general neural networks and specifications over the input/output dimension given by conjunctions of linear inequalities. We recapitulate the proof and repair some flaws in the original upper and lower bound proofs. Motivated by the general result, we show that NP-hardness already holds for restricted classes of simple specifications and neural networks. Allowing for a single hidden layer and an output dimension of one as well as neural networks with just one negative, zero and one positive weight or bias is sufficient to ensure NP-hardness. Additionally, we give a thorough discussion and outlook of possible extensions for this direction of research on neural network verification.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.