亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The quantitative description of the scientific conference MECO (Middle European Cooperation in Statistical Phy\-sics) based on bibliographic records is presented in the paper. Statistics of contributions and participants, co-authorship patterns at the levels of authors and countries, typical proportions of newcomers and permanent participants and other characteristics of scientific event are discussed. The results of this case study contribute to better understanding of the ways of formalization and assessment of conferences and their role in individual academic careers. To highlight the latter, the change of perspective is used: in addition to the general analysis of conference data, an ego-centric approach is used to emphasize the role of the particular participant for the conference and, vice versa, the role of MECO in the researcher's professional life. This paper is part of the special CMP issue dedicated to the anniversary of Bertrand Berche -- a well-known physicist, an active member of the community of authors and editors of the journal, long time collaborator and dear friend of the author.

相關內容

學(xue)術(shu)會(hui)議(yi),包括(kuo)國內(nei)外相關會(hui)議(yi)

A good teaching method is incomprehensible for an autistic child. The autism spectrum disorder is a very diverse phenomenon. It is said that no two autistic children are the same. So, something that works for one child may not be fit for another. The same case is true for their education. Different children need to be approached with different teaching methods. But it is quite hard to identify the appropriate teaching method. As the term itself explains, the autism spectrum disorder is like a spectrum. There are multiple factors to determine the type of autism of a child. A child might even be diagnosed with autism at the age of 9. Such a varied group of children of different ages, but specialized educational institutions still tend to them more or less the same way. This is where machine learning techniques can be applied to find a better way to identify a suitable teaching method for each of them. By analyzing their physical, verbal and behavioral performance, the proper teaching method can be suggested much more precisely compared to a diagnosis result. As a result, more children with autistic spectrum disorder can get better education that suits their needs the best.

High-quality education is one of the keys to achieving a more sustainable world. In contrast to traditional face-to-face classroom education, online education enables us to record and research a large amount of learning data for offering intelligent educational services. Knowledge Tracing (KT), which aims to monitor students' evolving knowledge state in learning, is the fundamental task to support these intelligent services. In recent years, an increasing amount of research is focused on this emerging field and considerable progress has been made. In this survey, we categorize existing KT models from a technical perspective and investigate these models in a systematic manner. Subsequently, we review abundant variants of KT models that consider more strict learning assumptions from three phases: before, during, and after learning. To better facilitate researchers and practitioners working on this field, we open source two algorithm libraries: EduData for downloading and preprocessing KT-related datasets, and EduKTM with extensible and unified implementation of existing mainstream KT models. Moreover, the development of KT cannot be separated from its applications, therefore we further present typical KT applications in different scenarios. Finally, we discuss some potential directions for future research in this fast-growing field.

Studies show dramatic increase in elderly population of Western Europe over the next few decades, which will put pressure on healthcare systems. Measures must be taken to meet these social challenges. Healthcare robots investigated to facilitate independent living for elderly. This paper aims to review recent projects in robotics for healthcare from 2008 to 2021. We provide an overview of the focus in this area and a roadmap for upcoming research. Our study was initiated with a literature search using three digital databases. Searches were performed for articles, including research projects containing the words elderly care, assisted aging, health monitoring, or elderly health, and any word including the root word robot. The resulting 20 recent research projects are described and categorized in this paper. Then, these projects were analyzed using thematic analysis. Our findings can be summarized in common themes: most projects have a strong focus on care robots functionalities; robots are often seen as products in care settings; there is an emphasis on robots as commercial products; and there is some limited focus on the design and ethical aspects of care robots. The paper concludes with five key points representing a roadmap for future research addressing robotic for elderly people.

While a large number of pre-trained models of source code have been successfully developed and applied to a variety of software engineering (SE) tasks in recent years, our understanding of these pre-trained models is arguably fairly limited. With the goal of advancing our understanding of these models, we perform the first systematic empirical comparison of 19 recently-developed pre-trained models of source code on 13 SE tasks. To gain additional insights into these models, we adopt a recently-developed 4-dimensional categorization of pre-trained models, and subsequently investigate whether there are correlations between different categories of pre-trained models and their performances on different SE tasks.

Purpose of review: We review recent advances in algorithmic development and validation for modeling and control of soft robots leveraging the Koopman operator theory. Recent findings: We identify the following trends in recent research efforts in this area. (1) The design of lifting functions used in the data-driven approximation of the Koopman operator is critical for soft robots. (2) Robustness considerations are emphasized. Works are proposed to reduce the effect of uncertainty and noise during the process of modeling and control. (3) The Koopman operator has been embedded into different model-based control structures to drive the soft robots. Summary: Because of their compliance and nonlinearities, modeling and control of soft robots face key challenges. To resolve these challenges, Koopman operator-based approaches have been proposed, in an effort to express the nonlinear system in a linear manner. The Koopman operator enables global linearization to reduce nonlinearities and/or serves as model constraints in model-based control algorithms for soft robots. Various implementations in soft robotic systems are illustrated and summarized in the review.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers can not see a panorama of the graph neural networks. This survey aims to overcome this limitation, and provide a comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 400 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the facing challenges. It is expected that more and more scholars can understand and exploit the graph neural networks, and use them in their research community.

北京阿比特科技有限公司