亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recommendation systems, users frequently engage in multiple types of behaviors, such as clicking, adding to a cart, and purchasing. However, with diversified behavior data, user behavior sequences will become very long in the short term, which brings challenges to the efficiency of the sequence recommendation model. Meanwhile, some behavior data will also bring inevitable noise to the modeling of user interests. To address the aforementioned issues, firstly, we develop the Efficient Behavior Sequence Miner (EBM) that efficiently captures intricate patterns in user behavior while maintaining low time complexity and parameter count. Secondly, we design hard and soft denoising modules for different noise types and fully explore the relationship between behaviors and noise. Finally, we introduce a contrastive loss function along with a guided training strategy to compare the valid information in the data with the noisy signal, and seamlessly integrate the two denoising processes to achieve a high degree of decoupling of the noisy signal. Sufficient experiments on real-world datasets demonstrate the effectiveness and efficiency of our approach in dealing with multi-behavior sequential recommendation.

相關內容

Modern Language Models (LMs) are capable of following long and complex instructions that enable a large and diverse set of user requests. While Information Retrieval (IR) models use these LMs as the backbone of their architectures, virtually none of them allow users to provide detailed instructions alongside queries, thus limiting their ability to satisfy complex information needs. In this work, we study the use of instructions in IR systems. First, we introduce our dataset FollowIR, which contains a rigorous instruction evaluation benchmark as well as a training set for helping IR models learn to better follow real-world instructions. FollowIR repurposes detailed instructions -- also known as narratives -- developed for professional assessors to evaluate retrieval systems. In particular, we build our benchmark from three collections curated for shared tasks at the Text REtrieval Conference (TREC). These collections contains hundreds to thousands of labeled documents per query, making them suitable for our exploration. Through this process, we can measure how well IR models follow instructions, through a new pairwise evaluation framework. Our results indicate that existing retrieval models fail to correctly use instructions, using them for basic keywords and struggling to understand long-form information. However, we show that it is possible for IR models to learn to follow complex instructions: our new FollowIR-7B model has significant improvements after fine-tuning on our training set.

Feature compression, as an important branch of video coding for machines (VCM), has attracted significant attention and exploration. However, the existing methods mainly focus on intra-feature similarity, such as the Mean Squared Error (MSE) between the reconstructed and original features, while neglecting the importance of inter-feature relationships. In this paper, we analyze the inter-feature relationships, focusing on feature discriminability in machine vision and underscoring its significance in feature compression. To maintain the feature discriminability of reconstructed features, we introduce a discrimination metric for feature compression. The discrimination metric is designed to ensure that the distance between features of the same category is smaller than the distance between features of different categories. Furthermore, we explore the relationship between the discrimination metric and the discriminability of the original features. Experimental results confirm the effectiveness of the proposed discrimination metric and reveal there exists a trade-off between the discrimination metric and the discriminability of the original features.

Agreement protocols are crucial in various emerging applications, spanning from distributed (blockchains) oracles to fault-tolerant cyber-physical systems. In scenarios where sensor/oracle nodes measure a common source, maintaining output within the convex range of correct inputs, known as convex validity, is imperative. Present asynchronous convex agreement protocols employ either randomization, incurring substantial computation overhead, or approximate agreement techniques, leading to high $\mathcal{\tilde{O}}(n^3)$ communication for an $n$-node system. This paper introduces Delphi, a deterministic protocol with $\mathcal{\tilde{O}}(n^2)$ communication and minimal computation overhead. Delphi assumes that honest inputs are bounded, except with negligible probability, and integrates agreement primitives from literature with a novel weighted averaging technique. Experimental results highlight Delphi's superior performance, showcasing a significantly lower latency compared to state-of-the-art protocols. Specifically, for an $n=160$-node system, Delphi achieves an 8x and 3x improvement in latency within CPS and AWS environments, respectively.

In recent years, large language models have attracted significant attention due to their exceptional performance across a multitude of natural language process tasks, and have been widely applied in various fields. However, the application of large language models in the Intellectual Property (IP) space is challenging due to the strong need for specialized knowledge, privacy protection, processing of extremely long text in this field. In this technical report, we present for the first time a low-cost, standardized procedure for training IP-oriented LLMs, meeting the unique requirements of the IP domain. Using this standard process, we have trained the PatentGPT series models based on open-source pretrained models. By evaluating them on the open-source IP-oriented benchmark MOZIP, our domain-specific LLMs outperforms GPT-4, indicating the effectiveness of the proposed training procedure and the expertise of the PatentGPT models in the IP demain. What is impressive is that our model significantly outperformed GPT-4 on the 2019 China Patent Agent Qualification Examination by achieving a score of 65, reaching the level of human experts. Additionally, the PatentGPT model, which utilizes the SMoE architecture, achieves performance comparable to that of GPT-4 in the IP domain and demonstrates a better cost-performance ratio on long-text tasks, potentially serving as an alternative to GPT-4 within the IP domain.

Before implementing a function, programmers are encouraged to write a purpose statement i.e., a short, natural-language explanation of what the function computes. A purpose statement may be ambiguous i.e., it may fail to specify the intended behaviour when two or more inequivalent computations are plausible on certain inputs. Our paper makes four contributions. First, we propose a novel heuristic that suggests such inputs using Large Language Models (LLMs). Using these suggestions, the programmer may choose to clarify the purpose statement (e.g., by providing a functional example that specifies the intended behaviour on such an input). Second, to assess the quality of inputs suggested by our heuristic, and to facilitate future research, we create an open dataset of purpose statements with known ambiguities. Third, we compare our heuristic against GitHub Copilot's Chat feature, which can suggest similar inputs when prompted to generate unit tests. Fourth, we provide an open-source implementation of our heuristic as an extension to Visual Studio Code for the Python programming language, where purpose statements and functional examples are specified as docstrings and doctests respectively. We believe that this tool will be particularly helpful to novice programmers and instructors.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司