亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the very last years, cybersecurity attacks have increased at an unprecedented pace, becoming ever more sophisticated and costly. Their impact has involved both private/public companies and critical infrastructures. At the same time, due to the COVID-19 pandemic, the security perimeters of many organizations expanded, causing an increase of the attack surface exploitable by threat actors through malware and phishing attacks. Given these factors, it is of primary importance to monitor the security perimeter and the events occurring in the monitored network, according to a tested security strategy of detection and response. In this paper, we present a protocol tunneling detector prototype which inspects, in near real time, a company's network traffic using machine learning techniques. Indeed, tunneling attacks allow malicious actors to maximize the time in which their activity remains undetected. The detector monitors unencrypted network flows and extracts features to detect possible occurring attacks and anomalies, by combining machine learning and deep learning. The proposed module can be embedded in any network security monitoring platform able to provide network flow information along with its metadata. The detection capabilities of the implemented prototype have been tested both on benign and malicious datasets. Results show 97.1% overall accuracy and an F1-score equals to 95.6%.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際(ji)網(wang)絡會議。 Publisher:IFIP。 SIT:

In the realm of e-commerce search, the significance of semantic matching cannot be overstated, as it directly impacts both user experience and company revenue. Query rewriting serves as an important technique to bridge semantic gaps inherent in the semantic matching process. However, existing query rewriting methods often struggle to effectively optimize long-tail queries and alleviate the phenomenon of \textit{``\nothing''} caused by semantic gap. In this paper, we present \textbf{\method}, a comprehensive framework that \textbf{B}ridges the s\textbf{E}mantic gap for long-tail \textbf{QUE}ries. \method comprises three stages: multi-instruction supervised fine tuning (SFT), offline feedback, and objective alignment. Specifically, we first construct a rewriting dataset based on rejection sampling, and mix it with multiple auxiliary tasks data to fine tune our large language model (LLM) in a supervised fashion during the first stage. Subsequently, with the well-trained LLM, we employ beam search to generate multiple candidate rewrites, which would be fed into Taobao offline system to simulate the retrieval process and obtain the partial order. Leveraging the partial order of candidate rewrites, we introduce a contrastive learning method to highlight the distinctions between rewrites and align the model with the Taobao online objectives. Offline experiments prove the effectiveness of our method in enhancing retrieval performance. Online A/B tests reveal that our method can significantly boost gross merchandise volume (GMV), number of transaction (\#Trans) and unique visitor (UV) for long-tail queries. \method has been deployed on Taobao, one of most popular online shopping platforms in China, since October 2023.

In recent years, multiple Light Detection and Ranging (LiDAR) systems have grown in popularity due to their enhanced accuracy and stability from the increased field of view (FOV). However, integrating multiple LiDARs can be challenging, attributable to temporal and spatial discrepancies. Common practice is to transform points among sensors while requiring strict time synchronization or approximating transformation among sensor frames. Unlike existing methods, we elaborate the inter-sensor transformation using continuous-time (CT) inertial measurement unit (IMU) modeling and derive associated ambiguity as a point-wise uncertainty. This uncertainty, modeled by combining the state covariance with the acquisition time and point range, allows us to alleviate the strict time synchronization and to overcome FOV difference. The proposed method has been validated on both public and our datasets and is compatible with various LiDAR manufacturers and scanning patterns. We open-source the code for public access at //github.com/minwoo0611/MA-LIO.

Submarine cables constitute the backbone of the Internet. However, these critical infrastructure components are vulnerable to several natural and man-made threats, and during failures, are difficult to repair in their remote oceanic environments. In spite of their crucial role, we have a limited understanding of the impact of submarine cable failures on global connectivity, particularly on the higher layers of the Internet. In this paper, we present Nautilus, a framework for cross-layer cartography of submarine cables and IP links. Using a corpus of public datasets and Internet cartographic techniques, Nautilus identifies IP links that are likely traversing submarine cables and maps them to one or more potential cables. Nautilus also gives each IP to cable assignment a prediction score that reflects the confidence in the mapping. Nautilus generates a mapping for 3.05 million and 1.43 million IPv4 and IPv6 links respectively, covering 91% of all active cables. In the absence of ground truth data, we validate Nautilus mapping using three techniques: analyzing past cable failures, using targeted traceroute measurements, and comparing with public network maps of two operators.

Landmines remain a threat to war-affected communities for years after conflicts have ended, partly due to the laborious nature of demining tasks. Humanitarian demining operations begin by collecting relevant information from the sites to be cleared, which is then analyzed by human experts to determine the potential risk of remaining landmines. In this paper, we propose RELand system to support these tasks, which consists of three major components. We (1) provide general feature engineering and label assigning guidelines to enhance datasets for landmine risk modeling, which are widely applicable to global demining routines, (2) formulate landmine presence as a classification problem and design a novel interpretable model based on sparse feature masking and invariant risk minimization, and run extensive evaluation under proper protocols that resemble real-world demining operations to show a significant improvement over the state-of-the-art, and (3) build an interactive web interface to suggest priority areas for demining organizations. We are currently collaborating with a humanitarian demining NGO in Colombia that is using our system as part of their field operations in two areas recently prioritized for demining.

Industrial systems are increasingly threatened by cyberattacks with potentially disastrous consequences. To counter such attacks, industrial intrusion detection systems strive to timely uncover even the most sophisticated breaches. Due to its criticality for society, this fast-growing field attracts researchers from diverse backgrounds, resulting in 130 new detection approaches in 2021 alone. This huge momentum facilitates the exploration of diverse promising paths but likewise risks fragmenting the research landscape and burying promising progress. Consequently, it needs sound and comprehensible evaluations to mitigate this risk and catalyze efforts into sustainable scientific progress with real-world applicability. In this paper, we therefore systematically analyze the evaluation methodologies of this field to understand the current state of industrial intrusion detection research. Our analysis of 609 publications shows that the rapid growth of this research field has positive and negative consequences. While we observe an increased use of public datasets, publications still only evaluate 1.3 datasets on average, and frequently used benchmarking metrics are ambiguous. At the same time, the adoption of newly developed benchmarking metrics sees little advancement. Finally, our systematic analysis enables us to provide actionable recommendations for all actors involved and thus bring the entire research field forward.

Research in scientific disciplines evolves, often rapidly, over time with the emergence of novel methodologies and their associated terminologies. While methodologies themselves being conceptual in nature and rather difficult to automatically extract and characterise, in this paper, we seek to develop supervised models for automatic extraction of the names of the various constituents of a methodology, e.g., `R-CNN', `ELMo' etc. The main research challenge for this task is effectively modeling the contexts around these methodology component names in a few-shot or even a zero-shot setting. The main contributions of this paper towards effectively identifying new evolving scientific methodology names are as follows: i) we propose a factored approach to sequence modeling, which leverages a broad-level category information of methodology domains, e.g., `NLP', `RL' etc.; ii) to demonstrate the feasibility of our proposed approach of identifying methodology component names under a practical setting of fast evolving AI literature, we conduct experiments following a simulated chronological setup (newer methodologies not seen during the training process); iii) our experiments demonstrate that the factored approach outperforms state-of-the-art baselines by margins of up to 9.257\% for the methodology extraction task with the few-shot setup.

The escalating risk of collisions and the accumulation of space debris in Low Earth Orbit (LEO) has reached critical concern due to the ever increasing number of spacecraft. Addressing this crisis, especially in dealing with non-cooperative and unidentified space debris, is of paramount importance. This paper contributes to efforts in enabling autonomous swarms of small chaser satellites for target geometry determination and safe flight trajectory planning for proximity operations in LEO. Our research explores on-orbit use of the You Only Look Once v5 (YOLOv5) object detection model trained to detect satellite components. While this model has shown promise, its inherent lack of interpretability hinders human understanding, a critical aspect of validating algorithms for use in safety-critical missions. To analyze the decision processes, we introduce Probabilistic Explanations for Entropic Knowledge extraction (PEEK), a method that utilizes information theoretic analysis of the latent representations within the hidden layers of the model. Through both synthetic in hardware-in-the-loop experiments, PEEK illuminates the decision-making processes of the model, helping identify its strengths, limitations and biases.

Restricting the variance of a policy's return is a popular choice in risk-averse Reinforcement Learning (RL) due to its clear mathematical definition and easy interpretability. Traditional methods directly restrict the total return variance. Recent methods restrict the per-step reward variance as a proxy. We thoroughly examine the limitations of these variance-based methods, such as sensitivity to numerical scale and hindering of policy learning, and propose to use an alternative risk measure, Gini deviation, as a substitute. We study various properties of this new risk measure and derive a policy gradient algorithm to minimize it. Empirical evaluation in domains where risk-aversion can be clearly defined, shows that our algorithm can mitigate the limitations of variance-based risk measures and achieves high return with low risk in terms of variance and Gini deviation when others fail to learn a reasonable policy.

Humans have the ability to learn novel compositional concepts by recalling and generalizing primitive concepts acquired from past experiences. Inspired by this observation, in this paper, we propose MetaReVision, a retrieval-enhanced meta-learning model to address the visually grounded compositional concept learning problem. The proposed MetaReVision consists of a retrieval module and a meta-learning module which are designed to incorporate retrieved primitive concepts as a supporting set to meta-train vision-anguage models for grounded compositional concept recognition. Through meta-learning from episodes constructed by the retriever, MetaReVision learns a generic compositional representation that can be fast updated to recognize novel compositional concepts. We create CompCOCO and CompFlickr to benchmark the grounded compositional concept learning. Our experimental results show that MetaReVision outperforms other competitive baselines and the retrieval module plays an important role in this compositional learning process.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司