亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the basic statistical problem of detecting truncation of the uniform distribution on the Boolean hypercube by juntas. More concretely, we give upper and lower bounds on the problem of distinguishing between i.i.d. sample access to either (a) the uniform distribution over $\{0,1\}^n$, or (b) the uniform distribution over $\{0,1\}^n$ conditioned on the satisfying assignments of a $k$-junta $f: \{0,1\}^n\to\{0,1\}$. We show that (up to constant factors) $\min\{2^k + \log{n\choose k}, {2^{k/2}\log^{1/2}{n\choose k}}\}$ samples suffice for this task and also show that a $\log{n\choose k}$ dependence on sample complexity is unavoidable. Our results suggest that testing junta truncation requires learning the set of relevant variables of the junta.

相關內容

Category theory is a branch of mathematics that provides a formal framework for understanding the relationship between mathematical structures. To this end, a category not only incorporates the data of the desired objects, but also "morphisms", which capture how different objects interact with each other. Category theory has found many applications in mathematics and in computer science, for example in functional programming. Double categories are a natural generalization of categories which incorporate the data of two separate classes of morphisms, allowing a more nuanced representation of relationships and interactions between objects. Similar to category theory, double categories have been successfully applied to various situations in mathematics and computer science, in which objects naturally exhibit two types of morphisms. Examples include categories themselves, but also lenses, petri nets, and spans. While categories have already been formalized in a variety of proof assistants, double categories have received far less attention. In this paper we remedy this situation by presenting a formalization of double categories via the proof assistant Coq, relying on the Coq UniMath library. As part of this work we present two equivalent formalizations of the definition of a double category, an unfolded explicit definition and a second definition which exhibits excellent formal properties via 2-sided displayed categories. As an application of the formal approach we establish a notion of univalent double category along with a univalence principle: equivalences of univalent double categories coincide with their identities

Spiking neural networks (SNNs) have ultra-low energy consumption and high biological plausibility due to their binary and bio-driven nature compared with artificial neural networks (ANNs). While previous research has primarily focused on enhancing the performance of SNNs in classification tasks, the generative potential of SNNs remains relatively unexplored. In our paper, we put forward Spiking Denoising Diffusion Probabilistic Models (SDDPM), a new class of SNN-based generative models that achieve high sample quality. To fully exploit the energy efficiency of SNNs, we propose a purely Spiking U-Net architecture, which achieves comparable performance to its ANN counterpart using only 4 time steps, resulting in significantly reduced energy consumption. Extensive experimental results reveal that our approach achieves state-of-the-art on the generative tasks and substantially outperforms other SNN-based generative models, achieving up to $12\times$ and $6\times$ improvement on the CIFAR-10 and the CelebA datasets, respectively. Moreover, we propose a threshold-guided strategy that can further improve the performances by 16.7% in a training-free manner. The SDDPM symbolizes a significant advancement in the field of SNN generation, injecting new perspectives and potential avenues of exploration.

Counterfactual Regret Minimization (CFR) and its variants are the best algorithms so far for solving large-scale incomplete information games. However, we believe that there are two problems with CFR: First, matrix multiplication is required in CFR iteration, and the time complexity of one iteration is too high; Secondly, the game characteristics in the real world are different. Just using one CFR algorithm will not be perfectly suitable for all game problems. For these two problems, this paper proposes a new algorithm called Pure CFR (PCFR) based on CFR. PCFR can be seen as a combination of CFR and Fictitious Play (FP), inheriting the concept of counterfactual regret (value) from CFR, and using the best response strategy instead of the regret matching strategy for the next iteration. This algorithm has three advantages. First, PCFR can be combined with any CFR variant. The resulting Pure MCCFR (PMCCFR) can significantly reduce the time and space complexity of one iteration. Secondly, our experiments show that the convergence speed of the PMCCFR is 2$\sim$3 times that of the MCCFR. Finally, there is a type of game that is very suitable for PCFR, we call this type of game clear-game, which is characterized by a high proportion of dominated strategies. Experiments show that in clear-game, the convergence rate of PMCCFR is two orders of magnitude higher than that of MCCFR.

Hyperdimensional computing (HDC) is a method to perform classification that uses binary vectors with high dimensions and the majority rule. This approach has the potential to be energy-efficient and hence deemed suitable for resource-limited platforms due to its simplicity and massive parallelism. However, in order to achieve high accuracy, HDC sometimes uses hypervectors with tens of thousands of dimensions. This potentially negates its efficiency advantage. In this paper, we examine the necessity of such high dimensions and conduct a detailed theoretical analysis of the relationship between hypervector dimensions and accuracy. Our results demonstrate that as the dimension of the hypervectors increases, the worst-case/average-case HDC prediction accuracy with the majority rule decreases. Building on this insight, we develop HDC models that use binary hypervectors with dimensions orders of magnitude lower than those of state-of-the-art HDC models while maintaining equivalent or even improved accuracy and efficiency. For instance, on the MNIST dataset, we achieve 91.12% HDC accuracy in image classification with a dimension of only 64. Our methods perform operations that are only 0.35% of other HDC models with dimensions of 10,000. Furthermore, we evaluate our methods on ISOLET, UCI-HAR, and Fashion-MNIST datasets and investigate the limits of HDC computing.

We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation (MMLE) procedure to estimate the parameters of a latent variable model. We achieve this by formulating a continuous-time interacting particle system which can be seen as a Langevin diffusion over an extended state space of parameters and latent variables. In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure where number of particles acts as the inverse temperature parameter in classical settings for global optimisation. Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error in a manner that is uniform in time and does not increase with the number of particles. The discretisation results in an algorithm, termed Interacting Particle Langevin Algorithm (IPLA) which can be used for MMLE. We further prove nonasymptotic bounds for the optimisation error of our estimator in terms of key parameters of the problem, and also extend this result to the case of stochastic gradients covering practical scenarios. We provide numerical experiments to illustrate the empirical behaviour of our algorithm in the context of logistic regression with verifiable assumptions. Our setting provides a straightforward way to implement a diffusion-based optimisation routine compared to more classical approaches such as the Expectation Maximisation (EM) algorithm, and allows for especially explicit nonasymptotic bounds.

Current multilingual semantic parsing (MSP) datasets are almost all collected by translating the utterances in the existing datasets from the resource-rich language to the target language. However, manual translation is costly. To reduce the translation effort, this paper proposes the first active learning procedure for MSP (AL-MSP). AL-MSP selects only a subset from the existing datasets to be translated. We also propose a novel selection method that prioritizes the examples diversifying the logical form structures with more lexical choices, and a novel hyperparameter tuning method that needs no extra annotation cost. Our experiments show that AL-MSP significantly reduces translation costs with ideal selection methods. Our selection method with proper hyperparameters yields better parsing performance than the other baselines on two multilingual datasets.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司