An explicit numerical method is developed for a class of time-changed stochastic differential equations, whose the coefficients obey H\"older's continuity in terms of the time variable and are allowed to grow super-linearly in terms of the state variable. The strong convergence of the method in a finite time interval is proved and the convergence rate is obtained. Numerical simulations are provided, which are in line with those theoretical results.
We consider a generic and explicit tamed Euler--Maruyama scheme for multidimensional time-inhomogeneous stochastic differential equations with multiplicative Brownian noise. The diffusion coefficient is uniformly elliptic, H\"older continuous and weakly differentiable in the spatial variables while the drift satisfies the Ladyzhenskaya--Prodi--Serrin condition, as considered by Krylov and R\"ockner (2005). In the discrete scheme, the drift is tamed by replacing it by an approximation. A strong rate of convergence of the scheme is provided in terms of the approximation error of the drift in a suitable and possibly very weak topology. A few examples of approximating drifts are discussed in detail. The parameters of the approximating drifts can vary and be fine-tuned to achieve the standard $1/2$-strong convergence rate with a logarithmic factor.
We study a class of algorithms for solving bilevel optimization problems in both stochastic and deterministic settings when the inner-level objective is strongly convex. Specifically, we consider algorithms based on inexact implicit differentiation and we exploit a warm-start strategy to amortize the estimation of the exact gradient. We then introduce a unified theoretical framework inspired by the study of singularly perturbed systems (Habets, 1974) to analyze such amortized algorithms. By using this framework, our analysis shows these algorithms to match the computational complexity of oracle methods that have access to an unbiased estimate of the gradient, thus outperforming many existing results for bilevel optimization. We illustrate these findings on synthetic experiments and demonstrate the efficiency of these algorithms on hyper-parameter optimization experiments involving several thousands of variables.
We consider pessimistic bilevel stochastic programs in which the follower maximizes over a fixed compact convex set a strictly convex quadratic function, whose Hessian depends on the leader's decision. The resulting random variable is evaluated by a convex risk measure. Under assumptions including real analyticity of the lower-level goal function, we prove existence of optimal solutions. We discuss an alternate model where the leader hedges against optimal lower-level solutions, and show that in this case solvability can be guaranteed under weaker conditions both in a deterministic and in a stochastic setting. The approach is applied to a mechanical shape optimization problem in which the leader decides on an optimal material distribution to minimize a tracking-type cost functional, whereas the follower chooses forces from an admissible set to maximize a compliance objective. The material distribution is considered to be stochastically perturbed in the actual construction phase. Computational results illustrate the bilevel optimization concept and demonstrate the interplay of follower and leader in shape design and testing.
We propose and analyse an augmented mixed finite element method for the Navier--Stokes equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and no-slip boundary conditions. The weak formulation includes least-squares terms arising from the constitutive equation and from the incompressibility condition, and we use a fixed point strategies to show the existence and uniqueness of continuous and discrete solutions under the assumption of sufficiently small data. The method is constructed using any compatible finite element pair (conforming or non-conforming) for velocity and pressure as dictated by Stokes inf-sup stability, while for vorticity any generic discrete space (of arbitrary order) can be used. We establish optimal a priori error estimates. Finally, we provide a set of numerical tests in 2D and 3D illustrating the behaviour of the scheme as well as verifying the theoretical convergence rates.
In this paper, we propose a semigroup method for solving high-dimensional elliptic partial differential equations (PDEs) and the associated eigenvalue problems based on neural networks. For the PDE problems, we reformulate the original equations as variational problems with the help of semigroup operators and then solve the variational problems with neural network (NN) parameterization. The main advantages are that no mixed second-order derivative computation is needed during the stochastic gradient descent training and that the boundary conditions are taken into account automatically by the semigroup operator. Unlike popular methods like PINN \cite{raissi2019physics} and Deep Ritz \cite{weinan2018deep} where the Dirichlet boundary condition is enforced solely through penalty functions and thus changes the true solution, the proposed method is able to address the boundary conditions without penalty functions and it gives the correct true solution even when penalty functions are added, thanks to the semigroup operator. For eigenvalue problems, a primal-dual method is proposed, efficiently resolving the constraint with a simple scalar dual variable and resulting in a faster algorithm compared with the BSDE solver \cite{han2020solving} in certain problems such as the eigenvalue problem associated with the linear Schr\"odinger operator. Numerical results are provided to demonstrate the performance of the proposed methods.
In this paper, we study the numerical method for approximating the random periodic solution of a semiliear stochastic evolution equation with an additive noise. The main challenge lies in proving a convergence over an infinite time horizon while simulating infinite-dimensional objects. We propose a Galerkin-type exponential integrator scheme and establish its convergence rate of the strong error to the mild solution.
It is necessary to use more general models than the classical Fourier heat conduction law to describe small-scale thermal conductivity processes. The effects of heat flow memory and heat capacity memory (internal energy) in solids are considered in first-order integrodifferential evolutionary equations with difference-type kernels. The main difficulties in applying such nonlocal in-time mathematical models are associated with the need to work with a solution throughout the entire history of the process. The paper develops an approach to transforming a nonlocal problem into a computationally simpler local problem for a system of first-order evolution equations. Such a transition is applicable for heat conduction problems with memory if the relaxation functions of the heat flux and heat capacity are represented as a sum of exponentials. The correctness of the auxiliary linear problem is ensured by the obtained estimates of the stability of the solution concerning the initial data and the right-hand side in the corresponding Hilbert spaces. The study's main result is to prove the unconditional stability of the proposed two-level scheme with weights for the evolutionary system of equations for modeling heat conduction in solid media with memory. In this case, finding an approximate solution on a new level in time is not more complicated than the classical heat equation. The numerical solution of a model one-dimensional in space heat conduction problem with memory effects is presented.
We present a method for learning latent stochastic differential equations (SDEs) from high-dimensional time series data. Given a high-dimensional time series generated from a lower dimensional latent unknown It\^o process, the proposed method learns the mapping from ambient to latent space, and the underlying SDE coefficients, through a self-supervised learning approach. Using the framework of variational autoencoders, we consider a conditional generative model for the data based on the Euler-Maruyama approximation of SDE solutions. Furthermore, we use recent results on identifiability of latent variable models to show that the proposed model can recover not only the underlying SDE coefficients, but also the original latent variables, up to an isometry, in the limit of infinite data. We validate the method through several simulated video processing tasks, where the underlying SDE is known, and through real world datasets.
We develop a rapid and accurate contour method for the solution of time-fractional PDEs. The method inverts the Laplace transform via an optimised stable quadrature rule, suitable for infinite-dimensional operators, whose error decreases like $\exp(-cN/\log(N))$ for $N$ quadrature points. The method is parallisable, avoids having to resolve singularities of the solution as $t\downarrow 0$, and avoids the large memory consumption that can be a challenge for time-stepping methods applied to time-fractional PDEs. The ODEs resulting from quadrature are solved using adaptive sparse spectral methods that converge exponentially with optimal linear complexity. These solutions of ODEs are reused for different times. We provide a complete analysis of our approach for fractional beam equations used to model small-amplitude vibration of viscoelastic materials with a fractional Kelvin-Voigt stress-strain relationship. We calculate the system's energy evolution over time and the surface deformation in cases of both constant and non-constant viscoelastic parameters. An infinite-dimensional ``solve-then-discretise'' approach considerably simplifies the analysis, which studies the generalisation of the numerical range of a quasi-linearisation of a suitable operator pencil. This allows us to build an efficient algorithm with explicit error control. The approach can be readily adapted to other time-fractional PDEs and is not constrained to fractional parameters in the range $0<\nu<1$.
In this paper, we consider a boundary value problem (BVP) for a fourth order nonlinear functional integro-differential equation. We establish the existence and uniqueness of solution and construct a numerical method for solving it. We prove that the method is of second order accuracy and obtain an estimate for the total error. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the numerical method.