Automatic speech recognition research focuses on training and evaluating on static datasets. Yet, as speech models are increasingly deployed on personal devices, such models encounter user-specific distributional shifts. To simulate this real-world scenario, we introduce LibriContinual, a continual learning benchmark for speaker-specific domain adaptation derived from LibriVox audiobooks, with data corresponding to 118 individual speakers and 6 train splits per speaker of different sizes. Additionally, current speech recognition models and continual learning algorithms are not optimized to be compute-efficient. We adapt a general-purpose training algorithm NetAug for ASR and create a novel Conformer variant called the DisConformer (Disentangled Conformer). This algorithm produces ASR models consisting of a frozen 'core' network for general-purpose use and several tunable 'augment' networks for speaker-specific tuning. Using such models, we propose a novel compute-efficient continual learning algorithm called DisentangledCL. Our experiments show that the DisConformer models significantly outperform baselines on general ASR i.e. LibriSpeech (15.58% rel. WER on test-other). On speaker-specific LibriContinual they significantly outperform trainable-parameter-matched baselines (by 20.65% rel. WER on test) and even match fully finetuned baselines in some settings.
We consider the problem of Learning from Label Proportions (LLP), a weakly supervised classification setup where instances are grouped into "bags", and only the frequency of class labels at each bag is available. Albeit, the objective of the learner is to achieve low task loss at an individual instance level. Here we propose Easyllp: a flexible and simple-to-implement debiasing approach based on aggregate labels, which operates on arbitrary loss functions. Our technique allows us to accurately estimate the expected loss of an arbitrary model at an individual level. We showcase the flexibility of our approach by applying it to popular learning frameworks, like Empirical Risk Minimization (ERM) and Stochastic Gradient Descent (SGD) with provable guarantees on instance level performance. More concretely, we exhibit a variance reduction technique that makes the quality of LLP learning deteriorate only by a factor of k (k being bag size) in both ERM and SGD setups, as compared to full supervision. Finally, we validate our theoretical results on multiple datasets demonstrating our algorithm performs as well or better than previous LLP approaches in spite of its simplicity.
One of the challenges of handwriting recognition is to transcribe a large number of vastly different writing styles. State-of-the-art approaches do not explicitly use information about the writer's style, which may be limiting overall accuracy due to various ambiguities. We explore models with writer-dependent parameters which take the writer's identity as an additional input. The proposed models can be trained on datasets with partitions likely written by a single author (e.g. single letter, diary, or chronicle). We propose a Writer Style Block (WSB), an adaptive instance normalization layer conditioned on learned embeddings of the partitions. We experimented with various placements and settings of WSB and contrastively pre-trained embeddings. We show that our approach outperforms a baseline with no WSB in a writer-dependent scenario and that it is possible to estimate embeddings for new writers. However, domain adaptation using simple finetuning in a writer-independent setting provides superior accuracy at a similar computational cost. The proposed approach should be further investigated in terms of training stability and embedding regularization to overcome such a baseline.
State-of-the-art parametric and non-parametric style transfer approaches are prone to either distorted local style patterns due to global statistics alignment, or unpleasing artifacts resulting from patch mismatching. In this paper, we study a novel semi-parametric neural style transfer framework that alleviates the deficiency of both parametric and non-parametric stylization. The core idea of our approach is to establish accurate and fine-grained content-style correspondences using graph neural networks (GNNs). To this end, we develop an elaborated GNN model with content and style local patches as the graph vertices. The style transfer procedure is then modeled as the attention-based heterogeneous message passing between the style and content nodes in a learnable manner, leading to adaptive many-to-one style-content correlations at the local patch level. In addition, an elaborated deformable graph convolutional operation is introduced for cross-scale style-content matching. Experimental results demonstrate that the proposed semi-parametric image stylization approach yields encouraging results on the challenging style patterns, preserving both global appearance and exquisite details. Furthermore, by controlling the number of edges at the inference stage, the proposed method also triggers novel functionalities like diversified patch-based stylization with a single model.
Continually learning to segment more and more types of image regions is a desired capability for many intelligent systems. However, such continual semantic segmentation suffers from the same catastrophic forgetting issue as in continual classification learning. While multiple knowledge distillation strategies originally for continual classification have been well adapted to continual semantic segmentation, they only consider transferring old knowledge based on the outputs from one or more layers of deep fully convolutional networks. Different from existing solutions, this study proposes to transfer a new type of information relevant to knowledge, i.e. the relationships between elements (Eg. pixels or small local regions) within each image which can capture both within-class and between-class knowledge. The relationship information can be effectively obtained from the self-attention maps in a Transformer-style segmentation model. Considering that pixels belonging to the same class in each image often share similar visual properties, a class-specific region pooling is applied to provide more efficient relationship information for knowledge transfer. Extensive evaluations on multiple public benchmarks support that the proposed self-attention transfer method can further effectively alleviate the catastrophic forgetting issue, and its flexible combination with one or more widely adopted strategies significantly outperforms state-of-the-art solutions.
The class-agnostic counting (CAC) problem has caught increasing attention recently due to its wide societal applications and arduous challenges. To count objects of different categories, existing approaches rely on user-provided exemplars, which is hard-to-obtain and limits their generality. In this paper, we aim to empower the framework to recognize adaptive exemplars within the whole images. A zero-shot Generalized Counting Network (GCNet) is developed, which uses a pseudo-Siamese structure to automatically and effectively learn pseudo exemplar clues from inherent repetition patterns. In addition, a weakly-supervised scheme is presented to reduce the burden of laborious density maps required by all contemporary CAC models, allowing GCNet to be trained using count-level supervisory signals in an end-to-end manner. Without providing any spatial location hints, GCNet is capable of adaptively capturing them through a carefully-designed self-similarity learning strategy. Extensive experiments and ablation studies on the prevailing benchmark FSC147 for zero-shot CAC demonstrate the superiority of our GCNet. It performs on par with existing exemplar-dependent methods and shows stunning cross-dataset generality on crowd-specific datasets, e.g., ShanghaiTech Part A, Part B and UCF_QNRF.
Deep neural networks (DNNs) have achieved remarkable success in a variety of computer vision tasks, where massive labeled images are routinely required for model optimization. Yet, the data collected from the open world are unavoidably polluted by noise, which may significantly undermine the efficacy of the learned models. Various attempts have been made to reliably train DNNs under data noise, but they separately account for either the noise existing in the labels or that existing in the images. A naive combination of the two lines of works would suffer from the limitations in both sides, and miss the opportunities to handle the two kinds of noise in parallel. This work provides a first, unified framework for reliable learning under the joint (image, label)-noise. Technically, we develop a confidence-based sample filter to progressively filter out noisy data without the need of pre-specifying noise ratio. Then, we penalize the model uncertainty of the detected noisy data instead of letting the model continue over-fitting the misleading information in them. Experimental results on various challenging synthetic and real-world noisy datasets verify that the proposed method can outperform competing baselines in the aspect of classification performance.
Language models (LMs) have been instrumental for the rapid advance of natural language processing. This paper studies continual learning of LMs, in particular, continual domain-adaptive pre-training (or continual DAP-training). Existing research has shown that further pre-training an LM using a domain corpus to adapt the LM to the domain can improve the end-task performance in the domain. This paper proposes a novel method to continually DAP-train an LM with a sequence of unlabeled domain corpora to adapt the LM to these domains to improve their end-task performances. The key novelty of our method is a soft-masking mechanism that directly controls the update to the LM. A novel proxy is also proposed to preserve the general knowledge in the original LM. Additionally, it contrasts the representations of the previously learned domain knowledge (including the general knowledge in the pre-trained LM) and the knowledge from the current full network to achieve knowledge integration. The method not only overcomes catastrophic forgetting, but also achieves knowledge transfer to improve end-task performances. Empirical evaluation demonstrates the effectiveness of the proposed method.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
We study the problem of named entity recognition (NER) from electronic medical records, which is one of the most fundamental and critical problems for medical text mining. Medical records which are written by clinicians from different specialties usually contain quite different terminologies and writing styles. The difference of specialties and the cost of human annotation makes it particularly difficult to train a universal medical NER system. In this paper, we propose a label-aware double transfer learning framework (La-DTL) for cross-specialty NER, so that a medical NER system designed for one specialty could be conveniently applied to another one with minimal annotation efforts. The transferability is guaranteed by two components: (i) we propose label-aware MMD for feature representation transfer, and (ii) we perform parameter transfer with a theoretical upper bound which is also label aware. We conduct extensive experiments on 12 cross-specialty NER tasks. The experimental results demonstrate that La-DTL provides consistent accuracy improvement over strong baselines. Besides, the promising experimental results on non-medical NER scenarios indicate that La-DTL is potential to be seamlessly adapted to a wide range of NER tasks.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.