亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quality-Diversity (QD) methods are algorithms that aim to generate a set of diverse and high-performing solutions to a given problem. Originally developed for evolutionary robotics, most QD studies are conducted on a limited set of domains - mainly applied to locomotion, where the fitness and the behavior signal are dense. Grasping is a crucial task for manipulation in robotics. Despite the efforts of many research communities, this task is yet to be solved. Grasping cumulates unprecedented challenges in QD literature: it suffers from reward sparsity, behavioral sparsity, and behavior space misalignment. The present work studies how QD can address grasping. Experiments have been conducted on 15 different methods on 10 grasping domains, corresponding to 2 different robot-gripper setups and 5 standard objects. An evaluation framework that distinguishes the evaluation of an algorithm from its internal components has also been proposed for a fair comparison. The obtained results show that MAP-Elites variants that select successful solutions in priority outperform all the compared methods on the studied metrics by a large margin. We also found experimental evidence that sparse interaction can lead to deceptive novelty. To our knowledge, the ability to efficiently produce examples of grasping trajectories demonstrated in this work has no precedent in the literature.

相關內容

It is anticipated that integrated sensing and communications (ISAC) would be one of the key enablers of next-generation wireless networks (such as beyond 5G (B5G) and 6G) for supporting a variety of emerging applications. In this paper, we provide a comprehensive review of the recent advances in ISAC systems, with a particular focus on their foundations, system design, networking aspects and ISAC applications. Furthermore, we discuss the corresponding open questions of the above that emerged in each issue. Hence, we commence with the information theory of sensing and communications (S$\&$C), followed by the information-theoretic limits of ISAC systems by shedding light on the fundamental performance metrics. Next, we discuss their clock synchronization and phase offset problems, the associated Pareto-optimal signaling strategies, as well as the associated super-resolution ISAC system design. Moreover, we envision that ISAC ushers in a paradigm shift for the future cellular networks relying on network sensing, transforming the classic cellular architecture, cross-layer resource management methods, and transmission protocols. In ISAC applications, we further highlight the security and privacy issues of wireless sensing. Finally, we close by studying the recent advances in a representative ISAC use case, namely the multi-object multi-task (MOMT) recognition problem using wireless signals.

Trajectory Optimization (TO) and Reinforcement Learning (RL) are powerful and complementary tools to solve optimal control problems. On the one hand, TO can efficiently compute locally-optimal solutions, but it tends to get stuck in local minima if the problem is not convex. On the other hand, RL is typically less sensitive to non-convexity, but it requires a much higher computational effort. Recently, we have proposed CACTO (Continuous Actor-Critic with Trajectory Optimization), an algorithm that uses TO to guide the exploration of an actor-critic RL algorithm. In turns, the policy encoded by the actor is used to warm-start TO, closing the loop between TO and RL. In this work, we present an extension of CACTO exploiting the idea of Sobolev learning. To make the training of the critic network faster and more data efficient, we enrich it with the gradient of the Value function, computed via a backward pass of the differential dynamic programming algorithm. Our results show that the new algorithm is more efficient than the original CACTO, reducing the number of TO episodes by a factor ranging from 3 to 10, and consequently the computation time. Moreover, we show that CACTO-SL helps TO to find better minima and to produce more consistent results.

Open-loop stable limit cycles are foundational to the dynamics of legged robots. They impart a self-stabilizing character to the robot's gait, thus alleviating the need for compute-heavy feedback-based gait correction. This paper proposes a general approach to rapidly generate limit cycles with explicit stability constraints for a given dynamical system. In particular, we pose the problem of open-loop limit cycle stability as a single-stage constrained-optimization problem (COP), and use Direct Collocation to transcribe it into a nonlinear program (NLP) with closed-form expressions for constraints, objectives, and their gradients. The COP formulations of stability are developed based (1) on the spectral radius of a discrete return map, and (2) on the spectral radius of the system's monodromy matrix, where the spectral radius is bounded using different constraint-satisfaction formulations of the eigenvalue problem. We compare the performance and solution qualities of each approach, but specifically highlight the Schur decomposition of the monodromy matrix as a formulation which boasts wider applicability through weaker assumptions and attractive numerical convergence properties. Moreover, we present results from our experiments on a spring-loaded inverted pendulum model of a robot, where our method generated actuation trajectories for open-loop stable hopping in under 2 seconds (on the Intel Core i7-6700K), and produced energy-minimizing actuation trajectories even under tight stability constraints.

The Join-the-Shortest-Queue (JSQ) load balancing scheme is widely acknowledged for its effectiveness in minimizing the average response time for jobs in systems with identical servers. However, when applied to a heterogeneous server system with servers of different processing speeds, the JSQ scheme exhibits suboptimal performance. Recently, a variation of JSQ called the Speed-Aware-Join-the-Shortest-Queue (SA-JSQ) scheme has been shown to attain fluid limit optimality for systems with heterogeneous servers. In this paper, we examine the SA-JSQ scheme for heterogeneous server systems under the Halfin-Whitt regime. Our analysis begins by establishing that the scaled and centered version of the system state weakly converges to a diffusion process characterized by stochastic integral equations. Furthermore, we prove that the diffusion process is positive recurrent and the sequence of stationary measures for the scaled and centered queue length processes converge to the stationary measure for the limiting diffusion process. To achieve this result, we employ Stein's method with a generator expansion approach.

The attention module is the key component in Transformers. While the global attention mechanism offers high expressiveness, its excessive computational cost restricts its applicability in various scenarios. In this paper, we propose a novel attention paradigm, Agent Attention, to strike a favorable balance between computational efficiency and representation power. Specifically, the Agent Attention, denoted as a quadruple $(Q, A, K, V)$, introduces an additional set of agent tokens $A$ into the conventional attention module. The agent tokens first act as the agent for the query tokens $Q$ to aggregate information from $K$ and $V$, and then broadcast the information back to $Q$. Given the number of agent tokens can be designed to be much smaller than the number of query tokens, the agent attention is significantly more efficient than the widely adopted Softmax attention, while preserving global context modelling capability. Interestingly, we show that the proposed agent attention is equivalent to a generalized form of linear attention. Therefore, agent attention seamlessly integrates the powerful Softmax attention and the highly efficient linear attention. Extensive experiments demonstrate the effectiveness of agent attention with various vision Transformers and across diverse vision tasks, including image classification, object detection, semantic segmentation and image generation. Notably, agent attention has shown remarkable performance in high-resolution scenarios, owning to its linear attention nature. For instance, when applied to Stable Diffusion, our agent attention accelerates generation and substantially enhances image generation quality without any additional training. Code is available at //github.com/LeapLabTHU/Agent-Attention.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司