In the paper, we propose a class of faster adaptive Gradient Descent Ascent (GDA) methods for solving the nonconvex-strongly-concave minimax problems based on unified adaptive matrices, which include almost existing coordinate-wise and global adaptive learning rates. Specifically, we propose a fast Adaptive Gradient Decent Ascent (AdaGDA) method based on the basic momentum technique, which reaches a lower sample complexity of $O(\kappa^4\epsilon^{-4})$ for finding an $\epsilon$-stationary point without large batches, which improves the results of the existing adaptive GDA methods by a factor of $O(\sqrt{\kappa})$. At the same time, we present an accelerated version of AdaGDA (VR-AdaGDA) method based on the momentum-based variance reduced technique, which achieves a lower sample complexity of $O(\kappa^{4.5}\epsilon^{-3})$ for finding an $\epsilon$-stationary point without large batches, which improves the results of the existing adaptive GDA methods by a factor of $O(\epsilon^{-1})$. Moreover, we prove that our VR-AdaGDA method reaches the best known sample complexity of $O(\kappa^{3}\epsilon^{-3})$ with the mini-batch size $O(\kappa^3)$. In particular, we provide an effective convergence analysis framework for our adaptive GDA methods. Some experimental results on fair classifier and policy evaluation tasks demonstrate the efficiency of our algorithms.
We study the effect of mini-batching on the loss landscape of deep neural networks using spiked, field-dependent random matrix theory. We demonstrate that the magnitude of the extremal values of the batch Hessian are larger than those of the empirical Hessian. We also derive similar results for the Generalised Gauss-Newton matrix approximation of the Hessian. As a consequence of our theorems we derive an analytical expressions for the maximal learning rates as a function of batch size, informing practical training regimens for both stochastic gradient descent (linear scaling) and adaptive algorithms, such as Adam (square root scaling), for smooth, non-convex deep neural networks. Whilst the linear scaling for stochastic gradient descent has been derived under more restrictive conditions, which we generalise, the square root scaling rule for adaptive optimisers is, to our knowledge, completely novel. %For stochastic second-order methods and adaptive methods, we derive that the minimal damping coefficient is proportional to the ratio of the learning rate to batch size. We validate our claims on the VGG/WideResNet architectures on the CIFAR-$100$ and ImageNet datasets. Based on our investigations of the sub-sampled Hessian we develop a stochastic Lanczos quadrature based on the fly learning rate and momentum learner, which avoids the need for expensive multiple evaluations for these key hyper-parameters and shows good preliminary results on the Pre-Residual Architecure for CIFAR-$100$.
Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.
We consider a special case of bandit problems, namely batched bandits. Motivated by natural restrictions of recommender systems and e-commerce platforms, we assume that a learning agent observes responses batched in groups over a certain time period. Unlike previous work, we consider a more practically relevant batch-centric scenario of batch learning. We provide a policy-agnostic regret analysis and demonstrate upper and lower bounds for the regret of a candidate policy. Our main theoretical results show that the impact of batch learning can be measured in terms of online behavior. Finally, we demonstrate the consistency of theoretical results by conducting empirical experiments and reflect on the optimal batch size choice.
We develop approximation algorithms for set-selection problems with deterministic constraints, but random objective values, i.e., stochastic probing problems. When the goal is to maximize the objective, approximation algorithms for probing problems are well-studied. On the other hand, few techniques are known for minimizing the objective, especially in the adaptive setting, where information about the random objective is revealed during the set-selection process and allowed to influence it. For minimization problems in particular, incorporating adaptivity can have a considerable effect on performance. In this work, we seek approximation algorithms that compare well to the optimal adaptive policy. We develop new techniques for adaptive minimization, applying them to a few problems of interest. The core technique we develop here is an approximate reduction from an adaptive expectation minimization problem to a set of adaptive probability minimization problems which we call threshold problems. By providing near-optimal solutions to these threshold problems, we obtain bicriteria adaptive policies. We apply this method to obtain an adaptive approximation algorithm for the MIN-ELEMENT problem, where the goal is to adaptively pick random variables to minimize the expected minimum value seen among them, subject to a knapsack constraint. This partially resolves an open problem raised in Goel et. al's "How to probe for an extreme value". We further consider three extensions on the MIN-ELEMENT problem, where our objective is the sum of the smallest k element-weights, or the weight of the min-weight basis of a given matroid, or where the constraint is not given by a knapsack but by a matroid constraint. For all three variations we explore, we develop adaptive approximation algorithms for their corresponding threshold problems, and prove their near-optimality via coupling arguments.
Multi-modal learning, which focuses on utilizing various modalities to improve the performance of a model, is widely used in video recognition. While traditional multi-modal learning offers excellent recognition results, its computational expense limits its impact for many real-world applications. In this paper, we propose an adaptive multi-modal learning framework, called AdaMML, that selects on-the-fly the optimal modalities for each segment conditioned on the input for efficient video recognition. Specifically, given a video segment, a multi-modal policy network is used to decide what modalities should be used for processing by the recognition model, with the goal of improving both accuracy and efficiency. We efficiently train the policy network jointly with the recognition model using standard back-propagation. Extensive experiments on four challenging diverse datasets demonstrate that our proposed adaptive approach yields 35%-55% reduction in computation when compared to the traditional baseline that simply uses all the modalities irrespective of the input, while also achieving consistent improvements in accuracy over the state-of-the-art methods.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers. However, even in the few-shot regime, discriminatively trained linear predictors can offer better generalization. We propose to use these predictors as base learners to learn representations for few-shot learning and show they offer better tradeoffs between feature size and performance across a range of few-shot recognition benchmarks. Our objective is to learn feature embeddings that generalize well under a linear classification rule for novel categories. To efficiently solve the objective, we exploit two properties of linear classifiers: implicit differentiation of the optimality conditions of the convex problem and the dual formulation of the optimization problem. This allows us to use high-dimensional embeddings with improved generalization at a modest increase in computational overhead. Our approach, named MetaOptNet, achieves state-of-the-art performance on miniImageNet, tieredImageNet, CIFAR-FS, and FC100 few-shot learning benchmarks. Our code is available at //github.com/kjunelee/MetaOptNet.
We demonstrate that many detection methods are designed to identify only a sufficently accurate bounding box, rather than the best available one. To address this issue we propose a simple and fast modification to the existing methods called Fitness NMS. This method is tested with the DeNet model and obtains a significantly improved MAP at greater localization accuracies without a loss in evaluation rate, and can be used in conjunction with Soft NMS for additional improvements. Next we derive a novel bounding box regression loss based on a set of IoU upper bounds that better matches the goal of IoU maximization while still providing good convergence properties. Following these novelties we investigate RoI clustering schemes for improving evaluation rates for the DeNet wide model variants and provide an analysis of localization performance at various input image dimensions. We obtain a MAP of 33.6%@79Hz and 41.8%@5Hz for MSCOCO and a Titan X (Maxwell). Source code available from: //github.com/lachlants/denet
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.