亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning world models can teach an agent how the world works in an unsupervised manner. Even though it can be viewed as a special case of sequence modeling, progress for scaling world models on robotic applications such as autonomous driving has been somewhat less rapid than scaling language models with Generative Pre-trained Transformers (GPT). We identify two reasons as major bottlenecks: dealing with complex and unstructured observation space, and having a scalable generative model. Consequently, we propose a novel world modeling approach that first tokenizes sensor observations with VQVAE, then predicts the future via discrete diffusion. To efficiently decode and denoise tokens in parallel, we recast Masked Generative Image Transformer into the discrete diffusion framework with a few simple changes, resulting in notable improvement. When applied to learning world models on point cloud observations, our model reduces prior SOTA Chamfer distance by more than 65% for 1s prediction, and more than 50% for 3s prediction, across NuScenes, KITTI Odometry, and Argoverse2 datasets. Our results demonstrate that discrete diffusion on tokenized agent experience can unlock the power of GPT-like unsupervised learning for robotic agents.

相關內容

Large language models show compelling performance on reasoning tasks but they tend to perform much worse in languages other than English. This is unsurprising given that their training data largely consists of English text and instructions. A typical solution is to translate instruction data into all languages of interest, and then train on the resulting multilingual data, which is called translate-training. This approach not only incurs high cost, but also results in poorly translated data due to the non-standard formatting of chain-of-thought and mathematical reasoning instructions. In this paper, we explore the benefits of question alignment, where we train the model to translate reasoning questions into English by finetuning on X-English question data. In this way we perform targetted, in-domain language alignment which makes best use of English instruction data to unlock the LLMs' multilingual reasoning abilities. Experimental results on LLaMA2-13B show that question alignment leads to consistent improvements over the translate-training approach: an average improvement of 11.3\% and 16.1\% accuracy across ten languages on the MGSM and MSVAMP maths reasoning benchmarks (The project will be available at: //github.com/NJUNLP/QAlign).

Environmental disasters such as floods, hurricanes, and wildfires have increasingly threatened communities worldwide, prompting various mitigation strategies. Among these, property buyouts have emerged as a prominent approach to reducing vulnerability to future disasters. This strategy involves governments purchasing at-risk properties from willing sellers and converting the land into open space, ostensibly reducing future disaster risk and impact. However, the aftermath of these buyouts, particularly concerning land-use patterns and community impacts, remains under-explored. This research aims to fill this gap by employing innovative techniques like satellite imagery analysis and deep learning to study these patterns. To achieve this goal, we employed FEMA's Hazard Mitigation Grant Program (HMGP) buyout dataset, encompassing over 41,004 addresses of these buyout properties from 1989 to 2017. Leveraging Google's Maps Static API, we gathered 40,053 satellite images corresponding to these buyout lands. Subsequently, we implemented five cutting-edge machine learning models to evaluate their performance in classifying land cover types. Notably, this task involved multi-class classification, and our model achieved an outstanding ROC-AUC score of 98.86%

Generative neural models hold great promise in enhancing programming education by synthesizing new content. We seek to design neural models that can automatically generate programming tasks for a given specification in the context of visual programming domains. Despite the recent successes of large generative models like GPT-4, our initial results show that these models are ineffective in synthesizing visual programming tasks and struggle with logical and spatial reasoning. We propose a novel neuro-symbolic technique, NeurTaskSyn, that can synthesize programming tasks for a specification given in the form of desired programming concepts exercised by its solution code and constraints on the visual task. NeurTaskSyn has two components: the first component is trained via imitation learning procedure to generate possible solution codes, and the second component is trained via reinforcement learning procedure to guide an underlying symbolic execution engine that generates visual tasks for these codes. We demonstrate the effectiveness of NeurTaskSyn through an extensive empirical evaluation and a qualitative study on reference tasks taken from the Hour of Code: Classic Maze challenge by Code-dot-org and the Intro to Programming with Karel course by CodeHS-dot-com.

Pretrained language models (PLMs) are today the primary model for natural language processing. Despite their impressive downstream performance, it can be difficult to apply PLMs to new languages, a barrier to making their capabilities universally accessible. While prior work has shown it possible to address this issue by learning a new embedding layer for the new language, doing so is both data and compute inefficient. We propose to use an active forgetting mechanism during pretraining, as a simple way of creating PLMs that can quickly adapt to new languages. Concretely, by resetting the embedding layer every K updates during pretraining, we encourage the PLM to improve its ability of learning new embeddings within a limited number of updates, similar to a meta-learning effect. Experiments with RoBERTa show that models pretrained with our forgetting mechanism not only demonstrate faster convergence during language adaptation but also outperform standard ones in a low-data regime, particularly for languages that are distant from English.

Artificial light plays an integral role in modern cities, significantly enhancing human productivity and the efficiency of civilization. However, excessive illumination can lead to light pollution, posing non-negligible threats to economic burdens, ecosystems, and human health. Despite its critical importance, the exploration of its causes remains relatively limited within the field of artificial intelligence, leaving an incomplete understanding of the factors contributing to light pollution and sustainable illumination planning distant. To address this gap, we introduce a novel framework named Causally Aware Generative Adversarial Networks (CAGAN). This innovative approach aims to uncover the fundamental drivers of light pollution within cities and offer intelligent solutions for optimal illumination resource allocation in the context of sustainable urban development. We commence by examining light pollution across 33,593 residential areas in seven global metropolises. Our findings reveal substantial influences on light pollution levels from various building types, notably grasslands, commercial centers and residential buildings as significant contributors. These discovered causal relationships are seamlessly integrated into the generative modeling framework, guiding the process of generating light pollution maps for diverse residential areas. Extensive experiments showcase CAGAN's potential to inform and guide the implementation of effective strategies to mitigate light pollution. Our code and data are publicly available at //github.com/zhangyuuao/Light_Pollution_CAGAN.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司