亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increasing complexity of the traffic environment, the importance of safety perception in intelligent driving is growing. Conventional methods in the robust perception of intelligent driving focus on training models with anomalous data, letting the deep neural network decide how to tackle anomalies. However, these models cannot adapt smoothly to the diverse and complex real-world environment. This paper proposes a new type of metric known as Eloss and offers a novel training strategy to empower perception models from the aspect of anomaly detection. Eloss is designed based on an explanation of the perception model's information compression layers. Specifically, taking inspiration from the design of a communication system, the information transmission process of an information compression network has two expectations: the amount of information changes steadily, and the information entropy continues to decrease. Then Eloss can be obtained according to the above expectations, guiding the update of related network parameters and producing a sensitive metric to identify anomalies while maintaining the model performance. Our experiments demonstrate that Eloss can deviate from the standard value by a factor over 100 with anomalous data and produce distinctive values for similar but different types of anomalies, showing the effectiveness of the proposed method. Our code is available at: (code available after paper accepted).

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 增強現實(AR) · 傳感器 · motivation · INFORMS ·
2023 年 3 月 24 日

Next-generation augmented reality (AR) promises a high degree of context-awareness - a detailed knowledge of the environmental, user, social and system conditions in which an AR experience takes place. This will facilitate both the closer integration of the real and virtual worlds, and the provision of context-specific content or adaptations. However, environmental awareness in particular is challenging to achieve using AR devices alone; not only are these mobile devices' view of an environment spatially and temporally limited, but the data obtained by onboard sensors is frequently inaccurate and incomplete. This, combined with the fact that many aspects of core AR functionality and user experiences are impacted by properties of the real environment, motivates the use of ambient IoT devices, wireless sensors and actuators placed in the surrounding environment, for the measurement and optimization of environment properties. In this book chapter we categorize and examine the wide variety of ways in which these IoT sensors and actuators can support or enhance AR experiences, including quantitative insights and proof-of-concept systems that will inform the development of future solutions. We outline the challenges and opportunities associated with several important research directions which must be addressed to realize the full potential of next-generation AR.

Driving under varying road conditions is challenging, especially for autonomous vehicles that must adapt in real-time to changes in the environment, e.g., rain, snow, etc. It is difficult to apply offline learning-based methods in these time-varying settings, as the controller should be trained on datasets representing all conditions it might encounter in the future. While online learning may adapt a model from real-time data, its convergence is often too slow for fast varying road conditions. We study this problem in autonomous racing, where driving at the limits of handling under varying road conditions is required for winning races. We propose a computationally-efficient approach that leverages an ensemble of Gaussian processes (GPs) to generalize and adapt pre-trained GPs to unseen conditions. Each GP is trained on driving data with a different road surface friction. A time-varying convex combination of these GPs is used within a model predictive control (MPC) framework, where the model weights are adapted online to the current road condition based on real-time data. The predictive variance of the ensemble Gaussian process (EGP) model allows the controller to account for prediction uncertainty and enables safe autonomous driving. Extensive simulations of a full scale autonomous car demonstrated the effectiveness of our proposed EGP-MPC method for providing good tracking performance in varying road conditions and the ability to generalize to unknown maps.

As robots become more prevalent, optimizing their design for better performance and efficiency is becoming increasingly important. However, current robot design practices overlook the impact of perception and design choices on a robot's learning capabilities. To address this gap, we propose a comprehensive methodology that accounts for the interplay between the robot's perception, hardware characteristics, and task requirements. Our approach optimizes the robot's morphology holistically, leading to improved learning and task execution proficiency. To achieve this, we introduce a Morphology-AGnostIc Controller (MAGIC), which helps with the rapid assessment of different robot designs. The MAGIC policy is efficiently trained through a novel PRIvileged Single-stage learning via latent alignMent (PRISM) framework, which also encourages behaviors that are typical of robot onboard observation. Our simulation-based results demonstrate that morphologies optimized holistically improve the robot performance by 15-20% on various manipulation tasks, and require 25x less data to match human-expert made morphology performance. In summary, our work contributes to the growing trend of learning-based approaches in robotics and emphasizes the potential in designing robots that facilitate better learning.

In media industry, the demand of SDR-to-HDRTV up-conversion arises when users possess HDR-WCG (high dynamic range-wide color gamut) TVs while most off-the-shelf footage is still in SDR (standard dynamic range). The research community has started tackling this low-level vision task by learning-based approaches. When applied to real SDR, yet, current methods tend to produce dim and desaturated result, making nearly no improvement on viewing experience. Different from other network-oriented methods, we attribute such deficiency to training set (HDR-SDR pair). Consequently, we propose new HDRTV dataset (dubbed HDRTV4K) and new HDR-to-SDR degradation models. Then, it's used to train a luminance-segmented network (LSN) consisting of a global mapping trunk, and two Transformer branches on bright and dark luminance range. We also update assessment criteria by tailored metrics and subjective experiment. Finally, ablation studies are conducted to prove the effectiveness. Our work is available at: //github.com/AndreGuo/HDRTVDM.

Human-machine interaction (HMI) and human-robot interaction (HRI) can assist structural monitoring and structural dynamics testing in the laboratory and field. In vibratory experimentation, one mode of generating vibration is to use electrodynamic exciters. Manual control is a common way of setting the input of the exciter by the operator. To measure the structural responses to these generated vibrations sensors are attached to the structure. These sensors can be deployed by repeatable robots with high endurance, which require on-the-fly control. If the interface between operators and the controls was augmented, then operators can visualize the experiments, exciter levels, and define robot input with a better awareness of the area of interest. Robots can provide better aid to humans if intelligent on-the-fly control of the robot is: (1) quantified and presented to the human; (2) conducted in real-time for human feedback informed by data. Information provided by the new interface would be used to change the control input based on their understanding of real-time parameters. This research proposes using Augmented Reality (AR) applications to provide humans with sensor feedback and control of actuators and robots. This method improves cognition by allowing the operator to maintain awareness of structures while adjusting conditions accordingly with the assistance of the new real-time interface. One interface application is developed to plot sensor data in addition to voltage, frequency, and duration controls for vibration generation. Two more applications are developed under similar framework, one to control the position of a mediating robot and one to control the frequency of the robot movement. This paper presents the proposed model for the new control loop and then compares the new approach with a traditional method by measuring time delay in control input and user efficiency.

The analysis of distributed techniques is often focused upon their efficiency, without considering their robustness (or lack thereof). Such a consideration is particularly important when devices or central servers can fail, which can potentially cripple distributed systems. When such failures arise in wireless communications networks, important services that they use/provide (like anomaly detection) can be left inoperable and can result in a cascade of security problems. In this paper, we present a novel method to address these risks by combining both flat- and star-topologies, combining the performance and reliability benefits of both. We refer to this method as "Tol-FL", due to its increased failure-tolerance as compared to the technique of Federated Learning. Our approach both limits device failure risks while outperforming prior methods by up to 8% in terms of anomaly detection AUROC in a range of realistic settings that consider client as well as server failure, all while reducing communication costs. This performance demonstrates that Tol-FL is a highly suitable method for distributed model training for anomaly detection, especially in the domain of wireless networks.

Since polar codes were proposed, improving the performance of polar codes at limited code lengths has received significant attention. One of the effective solutions is a series of list flip decoders proposed in recent years. To further enhance performance, we proposed a parity-check-aided dynamic successive cancellation list flip (PC-DSCLF) decoder in this paper. First, we designed a simplified flip metric, and proved by simulations that this simplification hardly affects the error-correction performance of list flip decoders. Subsequently, we optimized the existing allocation scheme for parity check (PC) bits, and then designed the first multi-PC-aided scheme with the dynamic characteristic for list flip decoders. The dynamic characteristic refers to an excellent ability to correct higher-order errors, which is beneficial for error-correction performance improvement. Meantime, the multi-PC-aided scheme to list flip decoders brings more flexible distributed check bits, which can narrow down the range for searching error bits and achieve a more efficient early termination. Simulation results showed that without error-correction performance loss, PC-DSCLF decoder shows up to 51.1% average complexity gain with respect to the state-of-the-art list flip decoder at practical code lengths. Lower average complexity leads to lower average energy consumption and lower average decoding delay.

Recently, the robustness of deep learning models has received widespread attention, and various methods for improving model robustness have been proposed, including adversarial training, model architecture modification, design of loss functions, certified defenses, and so on. However, the principle of the robustness to attacks is still not fully understood, also the related research is still not sufficient. Here, we have identified a significant factor that affects the robustness of models: the distribution characteristics of softmax values for non-real label samples. We found that the results after an attack are highly correlated with the distribution characteristics, and thus we proposed a loss function to suppress the distribution diversity of softmax. A large number of experiments have shown that our method can improve robustness without significant time consumption.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司