An analytical solution for high supersonic flow over a circular cylinder based on Schneider's inverse method has been presented. In the inverse method, a shock shape is assumed and the corresponding flow field and the shape of the body producing the shock are found by integrating the equations of motion using the stream function. A shock shape theorised by Moeckel has been assumed and it is optimized by minimising the error between the shape of the body obtained using Schneider's method and the actual shape of the body. A further improvement in the shock shape is also found by using the Moeckel's shock shape in a small series expansion. With this shock shape, the whole flow field in the shock layer has been calculated using Schneider's method by integrating the equations of motion. This solution is compared against a fifth order accurate numerical solution using the discontinuous Galerkin method (DGM) and the maximum error in density is found to be of the order of 0.001 which demonstrates the accuracy of the method used for both plane and axisymmetric flows.
Ordinary state-based peridynamic (OSB-PD) models have an unparalleled capability to simulate crack propagation phenomena in solids with arbitrary Poisson's ratio. However, their non-locality also leads to prohibitively high computational cost. In this paper, a fast solution scheme for OSB-PD models based on matrix operation is introduced, with which, the graphics processing units (GPUs) are used to accelerate the computation. For the purpose of comparison and verification, a commonly used solution scheme based on loop operation is also presented. An in-house software is developed in MATLAB. Firstly, the vibration of a cantilever beam is solved for validating the loop- and matrix-based schemes by comparing the numerical solutions to those produced by a FEM software. Subsequently, two typical dynamic crack propagation problems are simulated to illustrate the effectiveness of the proposed schemes in solving dynamic fracture problems. Finally, the simulation of the Brokenshire torsion experiment is carried out by using the matrix-based scheme, and the similarity in the shapes of the experimental and numerical broken specimens further demonstrates the ability of the proposed approach to deal with 3D non-planar fracture problems. In addition, the speed-up of the matrix-based scheme with respect to the loop-based scheme and the performance of the GPU acceleration are investigated. The results emphasize the high computational efficiency of the matrix-based implementation scheme.
Arbitrary Pattern Formation (APF) is a fundamental coordination problem in swarm robotics. It requires a set of autonomous robots (mobile computing units) to form any arbitrary pattern (given as input) starting from any initial pattern. The APF problem is well-studied in both continuous and discrete settings. This work concerns the discrete version of the problem. A set of robots is placed on the nodes of an infinite rectangular grid graph embedded in a euclidean plane. The movements of the robots are restricted to one of the four neighboring grid nodes from its current position. The robots are autonomous, anonymous, identical, and homogeneous, and operate Look-Compute-Move cycles. Here we have considered the classical $\mathcal{OBLOT}$ robot model, i.e., the robots have no persistent memory and no explicit means of communication. The robots have full unobstructed visibility. This work proposes an algorithm that solves the APF problem in a fully asynchronous scheduler under this setting assuming the initial configuration is asymmetric. The considered performance measures of the algorithm are space and number of moves required for the robots. The algorithm is asymptotically move-optimal. A definition of the space-complexity is presented here. We observe an obvious lower bound $\mathcal{D}$ of the space complexity and show that the proposed algorithm has the space complexity $\mathcal{D}+4$. On comparing with previous related works, we show that this is the first proposed algorithm considering $\mathcal{OBLOT}$ robot model that is asymptotically move-optimal and has the least space complexity which is almost optimal.
Multiagent systems aim to accomplish highly complex learning tasks through decentralised consensus seeking dynamics and their use has garnered a great deal of attention in the signal processing and computational intelligence societies. This article examines the behaviour of multiagent networked systems with nonlinear filtering/learning dynamics. To this end, a general formulation for the actions of an agent in multiagent networked systems is presented and conditions for achieving a cohesive learning behaviour is given. Importantly, application of the so derived framework in distributed and federated learning scenarios are presented.
The escalating surge in data generation presents formidable challenges to information technology, necessitating advancements in storage, retrieval, and utilization. With the proliferation of artificial intelligence and big data, the "Data Age 2025" report forecasts an exponential increase in global data production. The escalating data volumes raise concerns about efficient data processing. The paper addresses the predicament of achieving a lower compression ratio while maintaining or surpassing the compression performance of state-of-the-art techniques. This paper introduces a lossy compression framework grounded in the perceptron model for data prediction, striving for high compression quality. The contributions of this study encompass the introduction of positive and negative factors within the relative-to-absolute domain transformation algorithm, the utilization of a three-layer perceptron for improved predictive accuracy, and data selection rule modifications for parallelized compression within compression blocks. Comparative experiments with SZ2.1's PW_REL mode demonstrate a maximum compression ratio reduction of 17.78%. The article is structured as follows: the introduction highlights the data explosion challenge; related work delves into existing solutions; optimization of mapping algorithms in the relative and absolute domains is expounded in Section 3,the design of the new compression framework is detailed in Section 4,In Section 5 we describe the whole process and give pseudo-code, and in Section 6, our solution is evaluated. Finally, in Section 7, we provide an outlook for future work.
The possibility of dynamically modifying the computational load of neural models at inference time is crucial for on-device processing, where computational power is limited and time-varying. Established approaches for neural model compression exist, but they provide architecturally static models. In this paper, we investigate the use of early-exit architectures, that rely on intermediate exit branches, applied to large-vocabulary speech recognition. This allows for the development of dynamic models that adjust their computational cost to the available resources and recognition performance. Unlike previous works, besides using pre-trained backbones we also train the model from scratch with an early-exit architecture. Experiments on public datasets show that early-exit architectures from scratch not only preserve performance levels when using fewer encoder layers, but also improve task accuracy as compared to using single-exit models or using pre-trained models. Additionally, we investigate an exit selection strategy based on posterior probabilities as an alternative to frame-based entropy.
Complex networks are used to model many real-world systems. However, the dimensionality of these systems can make them challenging to analyze. Dimensionality reduction techniques like POD can be used in such cases. However, these models are susceptible to perturbations in the input data. We propose an algorithmic framework that combines techniques from pattern recognition (PR) and stochastic filtering theory to enhance the output of such models. The results of our study show that our method can improve the accuracy of the surrogate model under perturbed inputs. Deep Neural Networks (DNNs) are susceptible to adversarial attacks. However, recent research has revealed that Neural Ordinary Differential Equations (neural ODEs) exhibit robustness in specific applications. We benchmark our algorithmic framework with the neural ODE-based approach as a reference.
Leverage score sampling is crucial to the design of randomized algorithms for large-scale matrix problems, while the computation of leverage scores is a bottleneck of many applications. In this paper, we propose a quantum algorithm to accelerate this useful method. The speedup is at least quadratic and could be exponential for well-conditioned matrices. We also prove some quantum lower bounds, which suggest that our quantum algorithm is close to optimal. As an application, we propose a new quantum algorithm for rigid regression problems with vector solution outputs. It achieves polynomial speedups over the best classical algorithm known. In this process, we give an improved randomized algorithm for rigid regression.
A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.
We present a novel computational model for the dynamics of alveolar recruitment/derecruitment (RD), which reproduces the underlying characteristics typically observed in injured lungs. The basic idea is a pressure- and time-dependent variation of the stress-free reference volume in reduced dimensional viscoelastic elements representing the acinar tissue. We choose a variable reference volume triggered by critical opening and closing pressures in a time-dependent manner from a straightforward mechanical point of view. In the case of (partially and progressively) collapsing alveolar structures, the volume available for expansion during breathing reduces and vice versa, eventually enabling consideration of alveolar collapse and reopening in our model. We further introduce a method for patient-specific determination of the underlying critical parameters of the new alveolar RD dynamics when integrated into the tissue elements, referred to as terminal units, of a spatially resolved physics-based lung model that simulates the human respiratory system in an anatomically correct manner. Relevant patient-specific parameters of the terminal units are herein determined based on medical image data and the macromechanical behavior of the lung during artificial ventilation. We test the whole modeling approach for a real-life scenario by applying it to the clinical data of a mechanically ventilated patient. The generated lung model is capable of reproducing clinical measurements such as tidal volume and pleural pressure during various ventilation maneuvers. We conclude that this new model is an important step toward personalized treatment of ARDS patients by considering potentially harmful mechanisms - such as cyclic RD and overdistension - and might help in the development of relevant protective ventilation strategies to reduce ventilator-induced lung injury (VILI).
This paper addresses the problem of end-effector formation control for a mixed group of two-link manipulators moving in a horizontal plane that comprises of fully-actuated manipulators and underactuated manipulators with only the second joint being actuated (referred to as the passive-active (PA) manipulators). The problem is solved by extending the distributed end-effector formation controller for the fully-actuated manipulator to the PA manipulator moving in a horizontal plane by using its integrability. This paper presents stability analysis of the closed-loop systems under a given necessary condition, and we prove that the manipulators' end-effector converge to the desired formation shape. The proposed method is validated by simulations.