亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of learning Neural Ordinary Differential Equations (neural ODEs) within the context of Linear Parameter-Varying (LPV) systems in continuous-time. LPV systems contain bilinear systems which are known to be universal approximators for non-linear systems. Moreover, a large class of neural ODEs can be embedded into LPV systems. As our main contribution we provide Probably Approximately Correct (PAC) bounds under stability for LPV systems related to neural ODEs. The resulting bounds have the advantage that they do not depend on the integration interval.

相關內容

PAC學習理論不關(guan)心(xin)(xin)假(jia)設(she)(she)選擇(ze)算法,他關(guan)心(xin)(xin)的是能否(fou)從假(jia)設(she)(she)空間H中(zhong)學習一個好的假(jia)設(she)(she)h。此理論不關(guan)心(xin)(xin)怎樣在假(jia)設(she)(she)空間中(zhong)尋(xun)找好的假(jia)設(she)(she),只(zhi)(zhi)關(guan)心(xin)(xin)能不能找得到。現(xian)在我(wo)們(men)在來看一下(xia)什么叫(jiao)“好假(jia)設(she)(she)”?只(zhi)(zhi)要滿(man)足兩個條件(PAC辨識條件)即(ji)可

Frequency analysis is useful for understanding the mechanisms of representation learning in neural networks (NNs). Most research in this area focuses on the learning dynamics of NNs for regression tasks, while little for classification. This study empirically investigates the latter and expands the understanding of frequency shortcuts. First, we perform experiments on synthetic datasets, designed to have a bias in different frequency bands. Our results demonstrate that NNs tend to find simple solutions for classification, and what they learn first during training depends on the most distinctive frequency characteristics, which can be either low- or high-frequencies. Second, we confirm this phenomenon on natural images. We propose a metric to measure class-wise frequency characteristics and a method to identify frequency shortcuts. The results show that frequency shortcuts can be texture-based or shape-based, depending on what best simplifies the objective. Third, we validate the transferability of frequency shortcuts on out-of-distribution (OOD) test sets. Our results suggest that frequency shortcuts can be transferred across datasets and cannot be fully avoided by larger model capacity and data augmentation. We recommend that future research should focus on effective training schemes mitigating frequency shortcut learning.

Algorithms from Randomized Numerical Linear Algebra (RandNLA) are known to be effective in handling high-dimensional computational problems, providing high-quality empirical performance as well as strong probabilistic guarantees. However, their practical application is complicated by the fact that the user needs to set various algorithm-specific tuning parameters which are different than those used in traditional NLA. This paper demonstrates how a surrogate-based autotuning approach can be used to address fundamental problems of parameter selection in RandNLA algorithms. In particular, we provide a detailed investigation of surrogate-based autotuning for sketch-and-precondition (SAP) based randomized least squares methods, which have been one of the great success stories in modern RandNLA. Empirical results show that our surrogate-based autotuning approach can achieve near-optimal performance with much less tuning cost than a random search (up to about 4x fewer trials of different parameter configurations). Moreover, while our experiments focus on least squares, our results demonstrate a general-purpose autotuning pipeline applicable to any kind of RandNLA algorithm.

We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the dual-porosity-Stokes problem. This coupled problem describes the interaction between free flow in macrofractures/conduits, governed by the Stokes equations, and flow in microfractures/matrix, governed by a dual-porosity model. We prove that the HDG method is strongly conservative, well-posed, and give an a priori error analysis showing dependence on the problem parameters. Our theoretical findings are corroborated by numerical examples

Benefiting from the development of deep learning, text-to-speech (TTS) techniques using clean speech have achieved significant performance improvements. The data collected from real scenes often contain noise and generally needs to be denoised by speech enhancement models. Noise-robust TTS models are often trained using the enhanced speech, which thus suffer from speech distortion and background noise that affect the quality of the synthesized speech. Meanwhile, it was shown that self-supervised pre-trained models exhibit excellent noise robustness on many speech tasks, implying that the learned representation has a better tolerance for noise perturbations. In this work, we therefore explore pre-trained models to improve the noise robustness of TTS models. Based on HIFI-GAN we first propose a representation-to-waveform vocoder, which aims to learn to map the representation of pre-trained models to the waveform. We then propose a text-to-representation Fastspeech2 model, which aims to learn to map text to pre-trained model representations. Experimental results on the LJSpeech and LibriTTS datasets show that our method outperforms those using speech enhancement methods in both subjective and objective metrics. Audio samples are available at: //zqs01.github.io/rep2wav/.

We study a class of Gaussian processes for which the posterior mean, for a particular choice of data, replicates a truncated Taylor expansion of any order. The data consist of derivative evaluations at the expansion point and the prior covariance kernel belongs to the class of Taylor kernels, which can be written in a certain power series form. We discuss and prove some results on maximum likelihood estimation of parameters of Taylor kernels. The proposed framework is a special case of Gaussian process regression based on data that is orthogonal in the reproducing kernel Hilbert space of the covariance kernel.

Machine learning (ML) has made BigCloneBench popular for semantic clone detection tools. However, BigCloneBench only has a few Java semantic clones. In addition, due to the design principles of how the benchmark was created, imbalance issues have been identified, including the ambiguity in the definition of semantic clones. Thus, ML-based clone detection algorithms trained on BigCloneBench may overlook semantic clones or report incorrect results. The SemanticCloneBench features Stack Overflow clones of several languages. However, it lacks samples for ML-based clone detection. There is also a marked lack of cross-language clone benchmarks. The widely used CLCDSA dataset lacks reusable examples that can't be used in real-world software systems, making it inadequate for ML-based clone detection. The OpenAI GPT-3 model has shown outstanding text production, including code generation and summarization. In this paper, we used the GPT-3 model to generate a complete benchmark for both semantic and cross-language clones. Using SemanticCloneBench's genuine language clones, we tested several prompts to see which yielded better results using GPT-3 question formulation. Then, we used NiCad to filter Type-1 and Type-2 clones from GPT-3 output. We used a GUI-assisted Clone Validator tool to manually validate all clone pairings with nine judges. Functionality testing and CloneCognition verified our benchmark has no syntactic clones. Later, we validated SourcererCC, Oreo and CLCDSA tools on our benchmark. The poor performance of these tools suggests GPTCloneBench has no syntactic clone. From 77,207 Clone pairs of SemanticCloneBench/GPT-3 output, we created a benchmark with 37,149 genuine semantic clone pairs, 19,288 false semantic pairs, and 20,770 cross-language clones across four languages (Java, C, C#, and Python).

The present work explores the theoretical limits of Machine Learning (ML) within the framework of Kolmogorov's theory of Algorithmic Probability, which clarifies the notion of entropy as Expected Kolmogorov Complexity and formalizes other fundamental concepts such as Occam's razor via Levin's Universal Distribution. As a fundamental application, we develop Maximum Entropy methods that allow us to derive the Erd\H{o}s--Kac Law in Probabilistic Number Theory, and establish the impossibility of discovering a formula for primes using Machine Learning via the Prime Coding Theorem.

With the rising popularity of autonomous navigation research, Formula Student (FS) events are introducing a Driverless Vehicle (DV) category to their event list. This paper presents the initial investigation into utilising Deep Reinforcement Learning (RL) for end-to-end control of an autonomous FS race car for these competitions. We train two state-of-the-art RL algorithms in simulation on tracks analogous to the full-scale design on a Turtlebot2 platform. The results demonstrate that our approach can successfully learn to race in simulation and then transfer to a real-world racetrack on the physical platform. Finally, we provide insights into the limitations of the presented approach and guidance into the future directions for applying RL toward full-scale autonomous FS racing.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司