亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores the efficacy of Mel Frequency Cepstral Coefficients (MFCCs) in detecting abnormal phonocardiograms using two classification strategies: a single-classifier and an ensemble-classifier approach. Phonocardiograms were segmented into S1, systole, S2, and diastole intervals, with thirteen MFCCs estimated from each segment, yielding 52 MFCCs per beat. In the single-classifier strategy, the MFCCs from nine consecutive beats were averaged to classify phonocardiograms. Conversely, the ensemble-classifier strategy employed nine classifiers to individually assess beats as normal or abnormal, with the overall classification based on the majority vote. Both methods were tested on a publicly available phonocardiogram database. Results demonstrated that the ensemble-classifier strategy achieved higher accuracy compared to the single-classifier approach, establishing MFCCs as more effective than other features, including time, time-frequency, and statistical features, evaluated in similar studies.

相關內容

This paper introduces Waste Factor (W), also denoted as Waste Figure (WF) in dB, a promising new metric for quantifying energy efficiency in a wide range of circuits and systems applications, including data centers and RANs. Also, the networks used to connect data centers and AI computing engines with users for ML applications must become more power efficient. This paper illustrates the limitations of existing energy efficiency metrics that inadequately capture the intricate energy dynamics of RAN components. We delineate the methodology for applying W across various network configurations, including MISO, SIMO, and MIMO systems, and demonstrate the effectiveness of W in identifying energy optimization opportunities. Our findings reveal that W not only offers nuanced insights into the energy performance of RANs but also facilitates informed decision-making for network design and operational efficiency. Furthermore, we show how W can be integrated with other KPIs to guide the development of optimal strategies for enhancing network energy efficiency under different operational conditions. Additionally, we present simulation results for a distributed multi-user MIMO system at 3.5, 17, and 28 GHz, demonstrating overall network power efficiency on a per square kilometer basis, and show how overall W decreases with an increasing number of base stations and increasing carrier frequency. This paper shows that adopting W as a figure of merit can significantly contribute to the sustainability and energy optimization of next-generation wireless communication networks, paving the way for greener and more sustainable, energy-efficient 5G and 6G technologies.

The rapid progress in the reasoning capability of the Multi-modal Large Language Models (MLLMs) has triggered the development of autonomous agent systems on mobile devices. MLLM-based mobile agent systems consist of perception, reasoning, memory, and multi-agent collaboration modules, enabling automatic analysis of user instructions and the design of task pipelines with only natural language and device screenshots as inputs. Despite the increased human-machine interaction efficiency, the security risks of MLLM-based mobile agent systems have not been systematically studied. Existing security benchmarks for agents mainly focus on Web scenarios, and the attack techniques against MLLMs are also limited in the mobile agent scenario. To close these gaps, this paper proposes a mobile agent security matrix covering 3 functional modules of the agent systems. Based on the security matrix, this paper proposes 4 realistic attack paths and verifies these attack paths through 8 attack methods. By analyzing the attack results, this paper reveals that MLLM-based mobile agent systems are not only vulnerable to multiple traditional attacks, but also raise new security concerns previously unconsidered. This paper highlights the need for security awareness in the design of MLLM-based systems and paves the way for future research on attacks and defense methods.

We propose a method of simulating the human process of foreign accentuation using Generative Spoken Language Model (GSLM) only with native speech corpora. When one listens to spoken words of a foreign language and repeats them, the repeated speech is often with the accent of that listener's L1. This is said to be because the spoken words are mentally represented as a sequence of phonological units of the L1, and those units are used for oral reproduction. We simulate this process by inputting speech of language A into GSLM of language B to add B's accent onto the input speech. The process of running ASR of the L1 for foreign input speech and giving the ASR result to TTS of the L1 can be viewed as a naive implementation of this approach. The results of our experiments show that the synthesized accent of the output speech is highly natural, compared to real samples of A generated by speakers whose L1 is B, and that the degree of accentuation is controllable.

Mathematical representations of graphs often resemble adjacency matrices or lists, representations that facilitate whiteboard reasoning and algorithm design. In the realm of proof assistants, inductive representations effectively define semantics for formal reasoning. This highlights a gap where algorithm design and proof assistants require a fundamentally different structure of graphs, particularly for process theories which represent programs using graphs. To address this gap, we present VyZX, a verified library for reasoning about inductively defined graphical languages. These inductive constructs arise naturally from category theory definitions. A key goal for VyZX is to Verify the ZX-calculus, a graphical language for reasoning about quantum computation. The ZX-calculus comes with a collection of diagrammatic rewrite rules that preserve the graph's semantic interpretation. We show how inductive graphs in VyZX are used to prove the correctness of the ZX-calculus rewrite rules and apply them in practice using standard proof assistant techniques. VyZX integrates easily with the proof engineer's workflow through visualization and automation.

Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs, undermining their reliability. A comprehensive quantitative evaluation is necessary to identify and understand the extent of hallucinations in these models. However, existing benchmarks are often limited in scope, focusing mainly on object hallucinations. Furthermore, current evaluation methods struggle to effectively address the subtle semantic distinctions between model outputs and reference data, as well as the balance between hallucination and informativeness. To address these issues, we introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases. Moreover, we propose a large language model (LLM)-based two-stage evaluation framework that generalizes the popular CHAIR metric and incorporates both faithfulness and coverage into the evaluation. Experiments on 10 established LVLMs demonstrate that our evaluation metric is more comprehensive and better correlated with humans than existing work when evaluating on our challenging human-annotated benchmark dataset. Our work also highlights the critical balance between faithfulness and coverage of model outputs, and encourages future works to address hallucinations in LVLMs while keeping their outputs informative.

This paper establishes error bounds for the convergence of a piecewise linear approximation of the constrained optimal smoothing problem posed in a reproducing kernel Hilbert space (RKHS). This problem can be reformulated as a Bayesian estimation problem involving a Gaussian process related to the kernel of the RKHS. Consequently, error bounds can be interpreted as a quantification of the maximum a posteriori (MAP) accuracy. To our knowledge, no error bounds have been proposed for this type of problem so far. The convergence results are provided as a function of the grid size, the regularity of the kernel, and the distance from the kernel interpolant of the approximation to the set of constraints. Inspired by the MaxMod algorithm from recent literature, which sequentially allocates knots for the piecewise linear approximation, we conduct our analysis for non-equispaced knots. These knots are even allowed to be non-dense, which impacts the definition of the optimal smoothing solution and our error bound quantifiers. Finally, we illustrate our theorems through several numerical experiments involving constraints such as boundedness and monotonicity.

This paper explores the impact of different back-translation approaches on machine translation for Ladin, specifically the Val Badia variant. Given the limited amount of parallel data available for this language (only 18k Ladin-Italian sentence pairs), we investigate the performance of a multilingual neural machine translation model fine-tuned for Ladin-Italian. In addition to the available authentic data, we synthesise further translations by using three different models: a fine-tuned neural model, a rule-based system developed specifically for this language pair, and a large language model. Our experiments show that all approaches achieve comparable translation quality in this low-resource scenario, yet round-trip translations highlight differences in model performance.

In this paper we argue that key, often sensational and misleading, claims regarding linguistic capabilities of Large Language Models (LLMs) are based on at least two unfounded assumptions; the assumption of language completeness and the assumption of data completeness. Language completeness assumes that a distinct and complete thing such as `a natural language' exists, the essential characteristics of which can be effectively and comprehensively modelled by an LLM. The assumption of data completeness relies on the belief that a language can be quantified and wholly captured by data. Work within the enactive approach to cognitive science makes clear that, rather than a distinct and complete thing, language is a means or way of acting. Languaging is not the kind of thing that can admit of a complete or comprehensive modelling. From an enactive perspective we identify three key characteristics of enacted language; embodiment, participation, and precariousness, that are absent in LLMs, and likely incompatible in principle with current architectures. We argue that these absences imply that LLMs are not now and cannot in their present form be linguistic agents the way humans are. We illustrate the point in particular through the phenomenon of `algospeak', a recently described pattern of high stakes human language activity in heavily controlled online environments. On the basis of these points, we conclude that sensational and misleading claims about LLM agency and capabilities emerge from a deep misconception of both what human language is and what LLMs are.

This paper explores the optimization of fault detection and diagnostics (FDD) in the Control Rod Drive System (CRDS) of GE-Hitachi's BWRX-300 small modular reactor (SMR), focusing on the electrically powered fine motion control rod drive (FMCRD) servomotors. Leveraging the coordinated motion of multiple FMCRDs for control rod adjustments, the study proposes a deep learning approach, utilizing one-dimensional convolutional neural network (1D CNN)-based autoencoders for anomaly detection and encoder-decoder structured 1D CNN classifiers for fault classification. Simulink models simulate normal and fault operations, monitoring electric current and electromagnetic torque. The training of the fault isolation and fault classification models is optimized. Various optimizers, including Adaptive Moment Estimation (Adam), Nesterov Adam (Nadam), Stochastic Gradient Descent (SGD), and Root Mean Square Propagation (RMSProp), are evaluated, with Nadam demonstrating a relatively superior performance across the isolation and classification tasks due to its adaptive gradient and Nesterov components. The research underscores the importance of considering the number of runs (each run has a different set of initial model parameters) as a hyperparameter during empirical optimizer comparisons and contributes insights crucial for enhancing FDD in SMR control systems and for the application of 1D CNN to FDD.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

北京阿比特科技有限公司