Motivated by the advances in deep learning techniques, the application of Unmanned Aerial Vehicle (UAV)-based object detection has proliferated across a range of fields, including vehicle counting, fire detection, and city monitoring. While most existing research studies only a subset of the challenges inherent to UAV-based object detection, there are few studies that balance various aspects to design a practical system for energy consumption reduction. In response, we present the E$^3$-UAV, an edge-based energy-efficient object detection system for UAVs. The system is designed to dynamically support various UAV devices, edge devices, and detection algorithms, with the aim of minimizing energy consumption by deciding the most energy-efficient flight parameters (including flight altitude, flight speed, detection algorithm, and sampling rate) required to fulfill the detection requirements of the task. We first present an effective evaluation metric for actual tasks and construct a transparent energy consumption model based on hundreds of actual flight data to formalize the relationship between energy consumption and flight parameters. Then we present a lightweight energy-efficient priority decision algorithm based on a large quantity of actual flight data to assist the system in deciding flight parameters. Finally, we evaluate the performance of the system, and our experimental results demonstrate that it can significantly decrease energy consumption in real-world scenarios. Additionally, we provide four insights that can assist researchers and engineers in their efforts to study UAV-based object detection further.
We propose two graph neural network layers for graphs with features in a Riemannian manifold. First, based on a manifold-valued graph diffusion equation, we construct a diffusion layer that can be applied to an arbitrary number of nodes and graph connectivity patterns. Second, we model a tangent multilayer perceptron by transferring ideas from the vector neuron framework to our general setting. Both layers are equivariant with respect to node permutations and isometries of the feature manifold. These properties have been shown to lead to a beneficial inductive bias in many deep learning tasks. Numerical examples on synthetic data as well as on triangle meshes of the right hippocampus to classify Alzheimer's disease demonstrate the very good performance of our layers.
Many multi-object tracking (MOT) approaches, which employ the Kalman Filter as a motion predictor, assume constant velocity and Gaussian-distributed filtering noises. These assumptions render the Kalman Filter-based trackers effective in linear motion scenarios. However, these linear assumptions serve as a key limitation when estimating future object locations within scenarios involving non-linear motion and occlusions. To address this issue, we propose a motion-based MOT approach with an adaptable motion predictor, called AM-SORT, which adapts to estimate non-linear uncertainties. AM-SORT is a novel extension of the SORT-series trackers that supersedes the Kalman Filter with the transformer architecture as a motion predictor. We introduce a historical trajectory embedding that empowers the transformer to extract spatio-temporal features from a sequence of bounding boxes. AM-SORT achieves competitive performance compared to state-of-the-art trackers on DanceTrack, with 56.3 IDF1 and 55.6 HOTA. We conduct extensive experiments to demonstrate the effectiveness of our method in predicting non-linear movement under occlusions.
The advancement of large language models (LLMs) leads to a new era marked by the development of autonomous applications in the real world, which drives innovation in the creation of advanced web-based agents. Existing web agents typically only handle one input modality and are evaluated only in simplified web simulators or static web snapshots, greatly limiting their applicability in real-world scenarios. To bridge this gap, we introduce WebVoyager, an innovative Large Multimodal Model (LMM) powered web agent that can complete user instructions end-to-end by interacting with real-world websites. Moreover, we propose a new evaluation protocol for web agents to address the challenges of automatic evaluation of open-ended web agent tasks, leveraging the robust multimodal comprehension capabilities of GPT-4V. We create a new benchmark by gathering real-world tasks from 15 widely used websites to evaluate our agents. We show that WebVoyager achieves a 55.7% task success rate, significantly surpassing the performance of both GPT-4 (All Tools) and the WebVoyager (text-only) setups, underscoring the exceptional capability of WebVoyager in practical applications. We found that our proposed automatic evaluation achieves 85.3% agreement with human judgment, paving the way for further development of web agents in a real-world setting.
With the rapid development of cloud and edge computing, Internet of Things (IoT) applications have been deployed in various aspects of human life. In this paper, we design and implement a holistic LoRa-based IoT system with LoRa communication capabilities, named SPARC-LoRa, which consists of field sensor nodes and a gateway connected to the Internet. SPARC-LoRa has the following important features. First, the proposed wireless network of SPARC-LoRa is even-driven and using off-the-shelf microcontroller and LoRa communication modules with a customized PCB design to integrate all the hardware. This enables SPARC-LoRa to achieve low power consumption, long range communication, and low cost. With a new connection-based upper layer protocol design, the scalability and communication reliability of SPARC-loRa can be achieved. Second, an open source software including sensor nodes and servers is designed based on Docker container with cloud storage, computing, and LTE functionalities. In order to achieve reliable wireless communication under extreme conditions, a relay module is designed and applied to SPARC-LoRa to forward the data from sensor nodes to the gateway node. The system design and implementation is completely open source and hosted on the DigitalOcean Droplet Cloud. Hence, the proposed system enables further research and applications in both academia and industry. The proposed system has been tested in real fields under different and extreme environmental conditions in Salt Lake City, Utah and the University of Nebraska-Lincoln. The experimental results validate the features of SPARC-LoRa including low power, reliability, and cloud services provided by SPARC-LoRa.
Magnetic resonance imaging (MRI) tasks often involve multiple contrasts. Recently, numerous deep learning-based multi-contrast MRI super-resolution (SR) and reconstruction methods have been proposed to explore the complementary information from the multi-contrast images. However, these methods either construct parameter-sharing networks or manually design fusion rules, failing to accurately model the correlations between multi-contrast images and lacking certain interpretations. In this paper, we propose a multi-contrast convolutional dictionary (MC-CDic) model under the guidance of the optimization algorithm with a well-designed data fidelity term. Specifically, we bulid an observation model for the multi-contrast MR images to explicitly model the multi-contrast images as common features and unique features. In this way, only the useful information in the reference image can be transferred to the target image, while the inconsistent information will be ignored. We employ the proximal gradient algorithm to optimize the model and unroll the iterative steps into a deep CDic model. Especially, the proximal operators are replaced by learnable ResNet. In addition, multi-scale dictionaries are introduced to further improve the model performance. We test our MC-CDic model on multi-contrast MRI SR and reconstruction tasks. Experimental results demonstrate the superior performance of the proposed MC-CDic model against existing SOTA methods. Code is available at //github.com/lpcccc-cv/MC-CDic.
We introduce Coverage Axis++, a novel and efficient approach to 3D shape skeletonization. The current state-of-the-art approaches for this task often rely on the watertightness of the input or suffer from substantial computational costs, thereby limiting their practicality. To address this challenge, Coverage Axis++ proposes a heuristic algorithm to select skeletal points, offering a high-accuracy approximation of the Medial Axis Transform (MAT) while significantly mitigating computational intensity for various shape representations. We introduce a simple yet effective strategy that considers both shape coverage and uniformity to derive skeletal points. The selection procedure enforces consistency with the shape structure while favoring the dominant medial balls, which thus introduces a compact underlying shape representation in terms of MAT. As a result, Coverage Axis++ allows for skeletonization for various shape representations (e.g., water-tight meshes, triangle soups, point clouds), specification of the number of skeletal points, few hyperparameters, and highly efficient computation with improved reconstruction accuracy. Extensive experiments across a wide range of 3D shapes validate the efficiency and effectiveness of Coverage Axis++. The code will be publicly available once the paper is published.
The robust generalization of deep learning models in the presence of inherent noise remains a significant challenge, especially when labels are subjective and noise is indiscernible in natural settings. This problem is particularly pronounced in many practical applications. In this paper, we address a special and important scenario of monitoring suicidal ideation, where time-series data, such as photoplethysmography (PPG), is susceptible to such noise. Current methods predominantly focus on image and text data or address artificially introduced noise, neglecting the complexities of natural noise in time-series analysis. To tackle this, we introduce a novel neural network model tailored for analyzing noisy physiological time-series data, named TNANet, which merges advanced encoding techniques with confidence learning, enhancing prediction accuracy. Another contribution of our work is the collection of a specialized dataset of PPG signals derived from real-world environments for suicidal ideation prediction. Employing this dataset, our TNANet achieves the prediction accuracy of 63.33% in a binary classification task, outperforming state-of-the-art models. Furthermore, comprehensive evaluations were conducted on three other well-known public datasets with artificially introduced noise to rigorously test the TNANet's capabilities. These tests consistently demonstrated TNANet's superior performance by achieving an accuracy improvement of more than 10% compared to baseline methods.
Center-based clustering has attracted significant research interest from both theory and practice. In many practical applications, input data often contain background knowledge that can be used to improve clustering results. In this work, we build on widely adopted $k$-center clustering and model its input background knowledge as must-link (ML) and cannot-link (CL) constraint sets. However, most clustering problems including $k$-center are inherently $\mathcal{NP}$-hard, while the more complex constrained variants are known to suffer severer approximation and computation barriers that significantly limit their applicability. By employing a suite of techniques including reverse dominating sets, linear programming (LP) integral polyhedron, and LP duality, we arrive at the first efficient approximation algorithm for constrained $k$-center with the best possible ratio of 2. We also construct competitive baseline algorithms and empirically evaluate our approximation algorithm against them on a variety of real datasets. The results validate our theoretical findings and demonstrate the great advantages of our algorithm in terms of clustering cost, clustering quality, and running time.
Diffusion models have emerged as powerful generative tools, rivaling GANs in sample quality and mirroring the likelihood scores of autoregressive models. A subset of these models, exemplified by DDIMs, exhibit an inherent asymmetry: they are trained over $T$ steps but only sample from a subset of $T$ during generation. This selective sampling approach, though optimized for speed, inadvertently misses out on vital information from the unsampled steps, leading to potential compromises in sample quality. To address this issue, we present the S$^{2}$-DMs, which is a new training method by using an innovative $L_{skip}$, meticulously designed to reintegrate the information omitted during the selective sampling phase. The benefits of this approach are manifold: it notably enhances sample quality, is exceptionally simple to implement, requires minimal code modifications, and is flexible enough to be compatible with various sampling algorithms. On the CIFAR10 dataset, models trained using our algorithm showed an improvement of 3.27% to 14.06% over models trained with traditional methods across various sampling algorithms (DDIMs, PNDMs, DEIS) and different numbers of sampling steps (10, 20, ..., 1000). On the CELEBA dataset, the improvement ranged from 8.97% to 27.08%. Access to the code and additional resources is provided in the github.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.