亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating the mutual information from samples from a joint distribution is a challenging problem in both science and engineering. In this work, we realize a variational bound that generalizes both discriminative and generative approaches. Using this bound, we propose a hybrid method to mitigate their respective shortcomings. Further, we propose Predictive Quantization (PQ): a simple generative method that can be easily combined with discriminative estimators for minimal computational overhead. Our propositions yield a tighter bound on the information thanks to the reduced variance of the estimator. We test our methods on a challenging task of correlated high-dimensional Gaussian distributions and a stochastic process involving a system of free particles subjected to a fixed energy landscape. Empirical results show that hybrid methods consistently improved mutual information estimates when compared to the corresponding discriminative counterpart.

相關內容

In the context of the high-dimensional Gaussian linear regression for ordered variables, we study the variable selection procedure via the minimization of the penalized least-squares criterion. We focus on model selection where the penalty function depends on an unknown multiplicative constant commonly calibrated for prediction. We propose a new proper calibration of this hyperparameter to simultaneously control predictive risk and false discovery rate. We obtain non-asymptotic theoretical bounds on the False Discovery Rate with respect to the hyperparameter and we provide an algorithm to calibrate it. It is based on completely observable quantities in view of applications. Our algorithm is validated by an extensive simulation study and is compared with some existing variable selection procedures. Finally, we propose a study to generalize our approach in complete variable selection.

Representation learning plays a crucial role in automated feature selection, particularly in the context of high-dimensional data, where non-parametric methods often struggle. In this study, we focus on supervised learning scenarios where the pertinent information resides within a lower-dimensional linear subspace of the data, namely the multi-index model. If this subspace were known, it would greatly enhance prediction, computation, and interpretation. To address this challenge, we propose a novel method for linear feature learning with non-parametric prediction, which simultaneously estimates the prediction function and the linear subspace. Our approach employs empirical risk minimisation, augmented with a penalty on function derivatives, ensuring versatility. Leveraging the orthogonality and rotation invariance properties of Hermite polynomials, we introduce our estimator, named RegFeaL. By utilising alternative minimisation, we iteratively rotate the data to improve alignment with leading directions and accurately estimate the relevant dimension in practical settings. We establish that our method yields a consistent estimator of the prediction function with explicit rates. Additionally, we provide empirical results demonstrating the performance of RegFeaL in various experiments.

The crossed random-effects model is widely used in applied statistics, finding applications in various fields such as longitudinal studies, e-commerce, and recommender systems, among others. However, these models encounter scalability challenges, as the computational time grows disproportionately with the number of data points, typically following a cubic root relationship (N^(3/2) or worse) with N. Our inspiration for addressing this issue comes from observing the recommender system employed by an online clothing retailer. Our dataset comprises over 700,000 clients, 5,000 items, and 5,000,000 measurements. When applying the maximum likelihood approach to fit crossed random effects, computational inefficiency becomes a significant concern, limiting the applicability of this approach in large-scale settings. To tackle the scalability issues, previous research by Ghosh et al. (2022a) and Ghosh et al. (2022b) has explored linear and logistic regression models utilizing fixed-effect features based on client and item variables, while incorporating random intercept terms for clients and items. In this study, we present a more generalized version of the problem, allowing random effect sizes/slopes. This extension enables us to capture the variability in effect size among both clients and items. Importantly, we have developed a scalable solution to address the aforementioned problem and have empirically demonstrated the consistency of our estimates. Specifically, as the number of data points increases, our estimates converge towards the true parameters. To validate our approach, we implement the proposed algorithm using Stitch Fix data.

Post-stratification is often used to estimate treatment effects with higher efficiency. However, most of the existing post-stratification frameworks depend on prior knowledge of the distributions of covariates and assume that the units are classified into post-strata without error. We propose a novel method to determine a proper stratification rule by mapping the covariates into a post-stratification factor (PSF) using predictive regression models. Inspired by the bootstrap aggregating (bagging) method, we utilize the out-of-bag delete-D jackknife to estimate strata boundaries, strata weights, and the variance of the point estimate. Confidence intervals are constructed with these estimators to take into account the additional variability coming from uncertainty in the strata boundaries and weights. Extensive simulations show that our proposed method consistently improves the efficiency of the estimates when the regression models are predictive and tends to be more robust than the regression imputation method.

The use of big data in official statistics and the applied sciences is accelerating, but statistics computed using only big data often suffer from substantial selection bias. This leads to inaccurate estimation and invalid statistical inference. We rectify the issue for a broad class of linear and nonlinear statistics by producing estimating equations that combine big data with a probability sample. Under weak assumptions about an unknown superpopulation, we show that our integrated estimator is consistent and asymptotically unbiased with an asymptotic normal distribution. Variance estimators with respect to both the sampling design alone and jointly with the superpopulation are obtained at once using a single, unified theoretical approach. A surprising corollary is that strategies minimising the design variance almost minimise the joint variance when the population and sample sizes are large. The integrated estimator is shown to be more efficient than its survey-only counterpart if dependence between sample membership indicators is small and the finite population is large. We illustrate our method for quantiles, the Gini index, linear regression coefficients and maximum likelihood estimators where the sampling design is stratified simple random sampling without replacement. Our results are illustrated in a simulation of individual Australian incomes.

Complex systems in science and engineering sometimes exhibit behavior that changes across different regimes. Traditional global models struggle to capture the full range of this complex behavior, limiting their ability to accurately represent the system. In response to this challenge, we propose a novel competitive learning approach for obtaining data-driven models of physical systems. The primary idea behind the proposed approach is to employ dynamic loss functions for a set of models that are trained concurrently on the data. Each model competes for each observation during training, allowing for the identification of distinct functional regimes within the dataset. To demonstrate the effectiveness of the learning approach, we coupled it with various regression methods that employ gradient-based optimizers for training. The proposed approach was tested on various problems involving model discovery and function approximation, demonstrating its ability to successfully identify functional regimes, discover true governing equations, and reduce test errors.

This work proposes novel techniques for the efficient numerical simulation of parameterized, unsteady partial differential equations. Projection-based reduced order models (ROMs) such as the reduced basis method employ a (Petrov-)Galerkin projection onto a linear low-dimensional subspace. In unsteady applications, space-time reduced basis (ST-RB) methods have been developed to achieve a dimension reduction both in space and time, eliminating the computational burden of time marching schemes. However, nonaffine parameterizations dilute any computational speedup achievable by traditional ROMs. Computational efficiency can be recovered by linearizing the nonaffine operators via hyper-reduction, such as the empirical interpolation method in matrix form. In this work, we implement new hyper-reduction techniques explicitly tailored to deal with unsteady problems and embed them in a ST-RB framework. For each of the proposed methods, we develop a posteriori error bounds. We run numerical tests to compare the performance of the proposed ROMs against high-fidelity simulations, in which we combine the finite element method for space discretization on 3D geometries and the Backward Euler time integrator. In particular, we consider a heat equation and an unsteady Stokes equation. The numerical experiments demonstrate the accuracy and computational efficiency our methods retain with respect to the high-fidelity simulations.

A key challenge in Bayesian decentralized data fusion is the `rumor propagation' or `double counting' phenomenon, where previously sent data circulates back to its sender. It is often addressed by approximate methods like covariance intersection (CI) which takes a weighted average of the estimates to compute the bound. The problem is that this bound is not tight, i.e. the estimate is often over-conservative. In this paper, we show that by exploiting the probabilistic independence structure in multi-agent decentralized fusion problems a tighter bound can be found using (i) an expansion to the CI algorithm that uses multiple (non-monolithic) weighting factors instead of one (monolithic) factor in the original CI and (ii) a general optimization scheme that is able to compute optimal bounds and fully exploit an arbitrary dependency structure. We compare our methods and show that on a simple problem, they converge to the same solution. We then test our new non-monolithic CI algorithm on a large-scale target tracking simulation and show that it achieves a tighter bound and a more accurate estimate compared to the original monolithic CI.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司