亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Model pre-training has become essential in various recognition tasks. Meanwhile, with the remarkable advancements in image generation models, pre-training methods utilizing generated images have also emerged given their ability to produce unlimited training data. However, while existing methods utilizing generated images excel in classification, they fall short in more practical tasks, such as human pose estimation. In this paper, we have experimentally demonstrated it and propose the generation of visually distinct images with identical human poses. We then propose a novel multi-positive contrastive learning, which optimally utilize the previously generated images to learn structural features of the human body. We term the entire learning pipeline as GenPoCCL. Despite using only less than 1% amount of data compared to current state-of-the-art method, GenPoCCL captures structural features of the human body more effectively, surpassing existing methods in a variety of human-centric perception tasks.

相關內容

Pre-trained Large Language Models (LLMs) are beginning to dominate the discourse around automatic code generation with natural language specifications. In contrast, the best-performing synthesizers in the domain of formal synthesis with precise logical specifications are still based on enumerative algorithms. In this paper, we evaluate the abilities of LLMs to solve formal synthesis benchmarks by carefully crafting a library of prompts for the domain. When one-shot synthesis fails, we propose a novel enumerative synthesis algorithm, which integrates calls to an LLM into a weighted probabilistic search. This allows the synthesizer to provide the LLM with information about the progress of the enumerator, and the LLM to provide the enumerator with syntactic guidance in an iterative loop. We evaluate our techniques on benchmarks from the Syntax-Guided Synthesis (SyGuS) competition. We find that GPT-3.5 as a stand-alone tool for formal synthesis is easily outperformed by state-of-the-art formal synthesis algorithms, but our approach integrating the LLM into an enumerative synthesis algorithm shows significant performance gains over both the LLM and the enumerative synthesizer alone and the winning SyGuS competition tool.

Recent advancements in text-to-image models have significantly enhanced image generation capabilities, yet a notable gap of open-source models persists in bilingual or Chinese language support. To address this need, we present Taiyi-Diffusion-XL, a new Chinese and English bilingual text-to-image model which is developed by extending the capabilities of CLIP and Stable-Diffusion-XL through a process of bilingual continuous pre-training. This approach includes the efficient expansion of vocabulary by integrating the most frequently used Chinese characters into CLIP's tokenizer and embedding layers, coupled with an absolute position encoding expansion. Additionally, we enrich text prompts by large vision-language model, leading to better images captions and possess higher visual quality. These enhancements are subsequently applied to downstream text-to-image models. Our empirical results indicate that the developed CLIP model excels in bilingual image-text retrieval.Furthermore, the bilingual image generation capabilities of Taiyi-Diffusion-XL surpass previous models. This research leads to the development and open-sourcing of the Taiyi-Diffusion-XL model, representing a notable advancement in the field of image generation, particularly for Chinese language applications. This contribution is a step forward in addressing the need for more diverse language support in multimodal research. The model and demonstration are made publicly available at \href{//huggingface.co/IDEA-CCNL/Taiyi-Stable-Diffusion-XL-3.5B/}{this https URL}, fostering further research and collaboration in this domain.

Recent advances in 3D generation have been remarkable, with methods such as DreamFusion leveraging large-scale text-to-image diffusion-based models to supervise 3D object generation. These methods enable the synthesis of detailed and photorealistic textured objects. However, the appearance of 3D objects produced by these text-to-3D models is unpredictable, and it is hard for the single-image-to-3D methods to deal with complex images, thus posing a challenge in generating appearance-controllable 3D objects. To achieve controllable complex 3D object synthesis, we propose IPDreamer, a novel approach that incorporates image prompt adaption to extract detailed and comprehensive appearance features from complex images, which are then utilized for 3D object generation. Our results demonstrate that IPDreamer effectively generates high-quality 3D objects that are consistent with both the provided text and the appearance of complex image prompts, demonstrating its promising capability in appearance-controllable 3D object generation. Our code is available at //github.com/zengbohan0217/IPDreamer.

Peer prediction mechanisms motivate high-quality feedback with provable guarantees. However, current methods only apply to rather simple reports, like multiple-choice or scalar numbers. We aim to broaden these techniques to the larger domain of text-based reports, drawing on the recent developments in large language models. This vastly increases the applicability of peer prediction mechanisms as textual feedback is the norm in a large variety of feedback channels: peer reviews, e-commerce customer reviews, and comments on social media. We introduce two mechanisms, the Generative Peer Prediction Mechanism (GPPM) and the Generative Synopsis Peer Prediction Mechanism (GSPPM). These mechanisms utilize LLMs as predictors, mapping from one agent's report to a prediction of her peer's report. Theoretically, we show that when the LLM prediction is sufficiently accurate, our mechanisms can incentivize high effort and truth-telling as an (approximate) Bayesian Nash equilibrium. Empirically, we confirm the efficacy of our mechanisms through experiments conducted on two real datasets: the Yelp review dataset and the ICLR OpenReview dataset. We highlight the results that on the ICLR dataset, our mechanisms can differentiate three quality levels -- human-written reviews, GPT-4-generated reviews, and GPT-3.5-generated reviews in terms of expected scores. Additionally, GSPPM penalizes LLM-generated reviews more effectively than GPPM.

Foundational models have significantly advanced in natural language processing (NLP) and computer vision (CV), with the Transformer architecture becoming a standard backbone. However, the Transformer's quadratic complexity poses challenges for handling longer sequences and higher resolution images. To address this challenge, State Space Models (SSMs) like Mamba have emerged as efficient alternatives, initially matching Transformer performance in NLP tasks and later surpassing Vision Transformers (ViTs) in various CV tasks. To improve the performance of SSMs, one crucial aspect is effective serialization of image patches. Existing methods, relying on linear scanning curves, often fail to capture complex spatial relationships and produce repetitive patterns, leading to biases. To address these limitations, we propose using fractal scanning curves for patch serialization. Fractal curves maintain high spatial proximity and adapt to different image resolutions, avoiding redundancy and enhancing SSMs' ability to model complex patterns accurately. We validate our method in image classification, detection, and segmentation tasks, and the superior performance validates its effectiveness.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images. Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation. Code is available at: //git.io/AdelaiDet

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.

北京阿比特科技有限公司