亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new approach for finding matchings in dense graphs by building on Szemer\'edi's celebrated Regularity Lemma. This allows us to obtain non-trivial albeit slight improvements over longstanding bounds for matchings in streaming and dynamic graphs. In particular, we establish the following results for $n$-vertex graphs: * A deterministic single-pass streaming algorithm that finds a $(1-o(1))$-approximate matching in $o(n^2)$ bits of space. This constitutes the first single-pass algorithm for this problem in sublinear space that improves over the $\frac{1}{2}$-approximation of the greedy algorithm. * A randomized fully dynamic algorithm that with high probability maintains a $(1-o(1))$-approximate matching in $o(n)$ worst-case update time per each edge insertion or deletion. The algorithm works even against an adaptive adversary. This is the first $o(n)$ update-time dynamic algorithm with approximation guarantee arbitrarily close to one. Given the use of regularity lemma, the improvement obtained by our algorithms over trivial bounds is only by some $(\log^*{n})^{\Theta(1)}$ factor. Nevertheless, in each case, they show that the ``right'' answer to the problem is not what is dictated by the previous bounds. Finally, in the streaming model, we also present a randomized $(1-o(1))$-approximation algorithm whose space can be upper bounded by the density of certain Ruzsa-Szemer\'edi (RS) graphs. While RS graphs by now have been used extensively to prove streaming lower bounds, ours is the first to use them as an upper bound tool for designing improved streaming algorithms.

相關內容

To enable learning on edge devices with fast convergence and low memory, we present a novel backpropagation-free optimization algorithm dubbed Target Projection Stochastic Gradient Descent (tpSGD). tpSGD generalizes direct random target projection to work with arbitrary loss functions and extends target projection for training recurrent neural networks (RNNs) in addition to feedforward networks. tpSGD uses layer-wise stochastic gradient descent (SGD) and local targets generated via random projections of the labels to train the network layer-by-layer with only forward passes. tpSGD doesn't require retaining gradients during optimization, greatly reducing memory allocation compared to SGD backpropagation (BP) methods that require multiple instances of the entire neural network weights, input/output, and intermediate results. Our method performs comparably to BP gradient-descent within 5% accuracy on relatively shallow networks of fully connected layers, convolutional layers, and recurrent layers. tpSGD also outperforms other state-of-the-art gradient-free algorithms in shallow models consisting of multi-layer perceptrons, convolutional neural networks (CNNs), and RNNs with competitive accuracy and less memory and time. We evaluate the performance of tpSGD in training deep neural networks (e.g. VGG) and extend the approach to multi-layer RNNs. These experiments highlight new research directions related to optimized layer-based adaptor training for domain-shift using tpSGD at the edge.

A seminal work of [Ahn-Guha-McGregor, PODS'12] showed that one can compute a cut sparsifier of an unweighted undirected graph by taking a near-linear number of linear measurements on the graph. Subsequent works also studied computing other graph sparsifiers using linear sketching, and obtained near-linear upper bounds for spectral sparsifiers [Kapralov-Lee-Musco-Musco-Sidford, FOCS'14] and first non-trivial upper bounds for spanners [Filtser-Kapralov-Nouri, SODA'21]. All these linear sketching algorithms, however, only work on unweighted graphs. In this paper, we initiate the study of weighted graph sparsification by linear sketching by investigating a natural class of linear sketches that we call incidence sketches, in which each measurement is a linear combination of the weights of edges incident on a single vertex. Our results are: 1. Weighted cut sparsification: We give an algorithm that computes a $(1 + \epsilon)$-cut sparsifier using $\tilde{O}(n \epsilon^{-3})$ linear measurements, which is nearly optimal. 2. Weighted spectral sparsification: We give an algorithm that computes a $(1 + \epsilon)$-spectral sparsifier using $\tilde{O}(n^{6/5} \epsilon^{-4})$ linear measurements. Complementing our algorithm, we then prove a superlinear lower bound of $\Omega(n^{21/20-o(1)})$ measurements for computing some $O(1)$-spectral sparsifier using incidence sketches. 3. Weighted spanner computation: We focus on graphs whose largest/smallest edge weights differ by an $O(1)$ factor, and prove that, for incidence sketches, the upper bounds obtained by~[Filtser-Kapralov-Nouri, SODA'21] are optimal up to an $n^{o(1)}$ factor.

In this paper, we propose an online-matching-based model to study the assignment problems arising in a wide range of online-matching markets, including online recommendations, ride-hailing platforms, and crowdsourcing markets. It features that each assignment can request a random set of resources and yield a random utility, and the two (cost and utility) can be arbitrarily correlated with each other. We present two linear-programming-based parameterized policies to study the tradeoff between the \emph{competitive ratio} (CR) on the total utilities and the \emph{variance} on the total number of matches (unweighted version). The first one (SAMP) is to sample an edge according to the distribution extracted from the clairvoyant optimal, while the second (ATT) features a time-adaptive attenuation framework that leads to an improvement over the state-of-the-art competitive-ratio result. We also consider the problem under a large-budget assumption and show that SAMP achieves asymptotically optimal performance in terms of competitive ratio.

The functional demands of robotic systems often require completing various tasks or behaviors under the effect of disturbances or uncertain environments. Of increasing interest is the autonomy for dynamic robots, such as multirotors, motor vehicles, and legged platforms. Here, disturbances and environmental conditions can have significant impact on the successful performance of the individual dynamic behaviors, referred to as "motion primitives". Despite this, robustness can be achieved by switching to and transitioning through suitable motion primitives. This paper contributes such a method by presenting an abstraction of the motion primitive dynamics and a corresponding "motion primitive transfer function". From this, a mixed discrete and continuous "motion primitive graph" is constructed, and an algorithm capable of online search of this graph is detailed. The result is a framework capable of realizing holistic robustness on dynamic systems. This is experimentally demonstrated for a set of motion primitives on a quadrupedal robot, subject to various environmental and intentional disturbances.

We have formalised Szemer\'edi's Regularity Lemma and Roth's Theorem on Arithmetic Progressions, two major results in extremal graph theory and additive combinatorics, using the proof assistant Isabelle/HOL. For the latter formalisation, we used the former to first show the Triangle Counting Lemma and the Triangle Removal Lemma: themselves important technical results. Here, in addition to showcasing the main formalised statements and definitions, we focus on sensitive points in the proofs, describing how we overcame the difficulties that we encountered.

Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability. However, prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes. In this work, we show that invariances in the likelihood function of over-parametrised models contribute to this phenomenon because these invariances complicate the structure of the posterior by introducing discrete and/or continuous modes which cannot be well approximated by Gaussian mean-field distributions. In particular, we show that the mean-field approximation has an additional gap in the evidence lower bound compared to a purpose-built posterior that takes into account the known invariances. Importantly, this invariance gap is not constant; it vanishes as the approximation reverts to the prior. We proceed by first considering translation invariances in a linear model with a single data point in detail. We show that, while the true posterior can be constructed from a mean-field parametrisation, this is achieved only if the objective function takes into account the invariance gap. Then, we transfer our analysis of the linear model to neural networks. Our analysis provides a framework for future work to explore solutions to the invariance problem.

Among the reasons that hinder the application of reinforcement learning (RL) to real-world problems, two factors are critical: limited data and the mismatch of the testing environment compared to training one. In this paper, we attempt to address these issues simultaneously with the problem setup of distributionally robust offline RL. Particularly, we learn an RL agent with the historical data obtained from the source environment and optimize it to perform well in the perturbed one. Moreover, we consider the linear function approximation to apply the algorithm to large-scale problems. We prove our algorithm can achieve the suboptimality of $O(1/\sqrt{K})$ depending on the linear function dimension $d$, which seems to be the first result with sample complexity guarantee in this setting. Diverse experiments are conducted to demonstrate our theoretical findings, showing the superiority of our algorithm against the non-robust one.

Recent deep learning approaches for multi-view depth estimation are employed either in a depth-from-video or a multi-view stereo setting. Despite different settings, these approaches are technically similar: they correlate multiple source views with a keyview to estimate a depth map for the keyview. In this work, we introduce the Robust Multi-View Depth Benchmark that is built upon a set of public datasets and allows evaluation in both settings on data from different domains. We evaluate recent approaches and find imbalanced performances across domains. Further, we consider a third setting, where camera poses are available and the objective is to estimate the corresponding depth maps with their correct scale. We show that recent approaches do not generalize across datasets in this setting. This is because their cost volume output runs out of distribution. To resolve this, we present the Robust MVD Baseline model for multi-view depth estimation, which is built upon existing components but employs a novel scale augmentation procedure. It can be applied for robust multi-view depth estimation, independent of the target data. We provide code for the proposed benchmark and baseline model at //github.com/lmb-freiburg/robustmvd.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.

北京阿比特科技有限公司