亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A recent cohort study revealed a positive correlate between major structural birth defects in infants and a certain medication taken by pregnant women. To draw valid causal inference, an outstanding problem to overcome was the missing birth defect outcomes among pregnancy losses resulting from spontaneous abortion. This led to missing not at random since, according to the theory of "terathanasia", a defected fetus is more likely to be spontaneously aborted. Other complications in the data included left truncation, right censoring, observational nature, and rare events. In addition, the previous analysis stratified on live birth against spontaneous abortion, which was itself a post-exposure variable and hence did not lead to a causal interpretation of the stratified results. In this paper we aim to estimate and provide inference for the causal parameters of scientific interest, including the principal effects, making use of the missing data mechanism informed by "terathanasia". The rare events with missing outcomes led to multiple sensitivity analyses where the causal parameters can be estimated with better confidence in each setting. Our findings should shed light on how studies on causal effects of medication or other exposures during pregnancy may be analyzed using state-of-the-art methodologies.

相關內容

In Euclidean Uniform Facility Location, the input is a set of clients in $\mathbb{R}^d$ and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the classical setting of dynamic geometric streams, where the clients are presented as a sequence of insertions and deletions of points in the grid $\{1,\ldots,\Delta\}^d$, and we focus on the \emph{high-dimensional regime}, where the algorithm's space complexity must be polynomial (and certainly not exponential) in $d\cdot\log\Delta$. We present a new algorithmic framework, based on importance sampling from the stream, for $O(1)$-approximation of the optimal cost using only $\mathrm{poly}(d\cdot\log\Delta)$ space. This framework is easy to implement in two passes, one for sampling points and the other for estimating their contribution. Over random-order streams, we can extend this to a one-pass algorithm by using the two halves of the stream separately. Our main result, for arbitrary-order streams, computes $O(d^{1.5})$-approximation in one pass by using the new framework but combining the two passes differently. This improves upon previous algorithms that either need space exponential in $d$ or only guarantee $O(d\cdot\log^2\Delta)$-approximation, and therefore our algorithms for high-dimensional streams are the first to avoid the $O(\log\Delta)$-factor in approximation that is inherent to the widely-used quadtree decomposition. Our improvement is achieved by employing a geometric hashing scheme that maps points in $\mathbb{R}^d$ into buckets of bounded diameter, with the key property that every point set of small-enough diameter is hashed into at most $\mathrm{poly}(d)$ distinct buckets. We complement our results by showing $1.085$-approximation requires space exponential in $\mathrm{poly}(d\cdot\log\Delta)$, even for insertion-only streams.

We consider a causal inference model in which individuals interact in a social network and they may not comply with the assigned treatments. Estimating causal parameters is challenging in the presence of network interference of unknown form, as each individual may be influenced by both close individuals and distant ones in complex ways. Noncompliance with treatment assignment further complicates this problem, and prior methods dealing with network spillovers but disregarding the noncompliance issue may underestimate the effect of the treatment receipt on the outcome. To estimate meaningful causal parameters, we introduce a new concept of exposure mapping, which summarizes potentially complicated spillover effects into a fixed dimensional statistic of instrumental variables. We investigate identification conditions for the intention-to-treat effect and the average causal effect for compliers, while explicitly considering the possibility of misspecification of exposure mapping. Based on our identification results, we develop nonparametric estimation procedures via inverse probability weighting. Their asymptotic properties, including consistency and asymptotic normality, are investigated using an approximate neighborhood interference framework, which is convenient for dealing with unknown forms of spillovers between individuals. For an empirical illustration, we apply our method to experimental data on the anti-conflict intervention school program.

Deep discrete structured models have seen considerable progress recently, but traditional inference using dynamic programming (DP) typically works with a small number of states (less than hundreds), which severely limits model capacity. At the same time, across machine learning, there is a recent trend of using randomized truncation techniques to accelerate computations involving large sums. Here, we propose a family of randomized dynamic programming (RDP) algorithms for scaling structured models to tens of thousands of latent states. Our method is widely applicable to classical DP-based inference (partition, marginal, reparameterization, entropy) and different graph structures (chains, trees, and more general hypergraphs). It is also compatible with automatic differentiation: it can be integrated with neural networks seamlessly and learned with gradient-based optimizers. Our core technique approximates the sum-product by restricting and reweighting DP on a small subset of nodes, which reduces computation by orders of magnitude. We further achieve low bias and variance via Rao-Blackwellization and importance sampling. Experiments over different graphs demonstrate the accuracy and efficiency of our approach. Furthermore, when using RDP for training a structured variational autoencoder with a scaled inference network, we achieve better test likelihood than baselines and successfully prevent posterior collapse. code at: //github.com/FranxYao/RDP

Falls, highly common in the constantly increasing global aging population, can have a variety of negative effects on their health, well-being, and quality of life, including restricting their capabilities to conduct Activities of Daily Living (ADLs), which are crucial for one's sustenance. Timely assistance during falls is highly necessary, which involves tracking the indoor location of the elderly during their diverse navigational patterns associated with ADLs to detect the precise location of a fall. With the decreasing caregiver population on a global scale, it is important that the future of intelligent living environments can detect falls during ADLs while being able to track the indoor location of the elderly in the real world. To address these challenges, this work proposes a cost-effective and simplistic design paradigm for an Ambient Assisted Living system that can capture multimodal components of user behaviors during ADLs that are necessary for performing fall detection and indoor localization in a simultaneous manner in the real world. Proof of concept results from real-world experiments are presented to uphold the effective working of the system. The findings from two comparison studies with prior works in this field are also presented to uphold the novelty of this work. The first comparison study shows how the proposed system outperforms prior works in the areas of indoor localization and fall detection in terms of the effectiveness of its software design and hardware design. The second comparison study shows that the cost for the development of this system is the least as compared to prior works in these fields, which involved real-world development of the underlining systems, thereby upholding its cost-effective nature.

We consider studies where multiple measures on an outcome variable are collected over time, but some subjects drop out before the end of follow up. Analyses of such data often proceed under either a 'last observation carried forward' or 'missing at random' assumption. We consider two alternative strategies for identification; the first is closely related to the difference-in-differences methodology in the causal inference literature. The second enables correction for violations of the parallel trend assumption, so long as one has access to a valid 'bespoke instrumental variable'. These are compared with existing approaches, first conceptually and then in an analysis of data from the Framingham Heart Study.

Entity alignment is a basic and vital technique in knowledge graph (KG) integration. Over the years, research on entity alignment has resided on the assumption that KGs are static, which neglects the nature of growth of real-world KGs. As KGs grow, previous alignment results face the need to be revisited while new entity alignment waits to be discovered. In this paper, we propose and dive into a realistic yet unexplored setting, referred to as continual entity alignment. To avoid retraining an entire model on the whole KGs whenever new entities and triples come, we present a continual alignment method for this task. It reconstructs an entity's representation based on entity adjacency, enabling it to generate embeddings for new entities quickly and inductively using their existing neighbors. It selects and replays partial pre-aligned entity pairs to train only parts of KGs while extracting trustworthy alignment for knowledge augmentation. As growing KGs inevitably contain non-matchable entities, different from previous works, the proposed method employs bidirectional nearest neighbor matching to find new entity alignment and update old alignment. Furthermore, we also construct new datasets by simulating the growth of multilingual DBpedia. Extensive experiments demonstrate that our continual alignment method is more effective than baselines based on retraining or inductive learning.

We develop a new approach to drifting games, a class of two-person games with many applications to boosting and online learning settings, including Prediction with Expert Advice and the Hedge game. Our approach involves (a) guessing an asymptotically optimal potential by solving an associated partial differential equation (PDE); then (b) justifying the guess, by proving upper and lower bounds on the final-time loss whose difference scales like a negative power of the number of time steps. The proofs of our potential-based upper bounds are elementary, using little more than Taylor expansion. The proofs of our potential-based lower bounds are also rather elementary, combining Taylor expansion with probabilistic or combinatorial arguments. Most previous work on asymptotically optimal strategies has used potentials obtained by solving a discrete dynamic programming principle; the arguments are complicated by their discrete nature. Our approach is facilitated by the fact that the potentials we use are explicit solutions of PDEs; the arguments are based on basic calculus. Not only is our approach more elementary, but we give new potentials and derive corresponding upper and lower bounds that match each other in the asymptotic regime.

Detecting the presence of project management anti-patterns (AP) currently requires experts on the matter and is an expensive endeavor. Worse, experts may introduce their individual subjectivity or bias. Using the Fire Drill AP, we first introduce a novel way to translate descriptions into detectable AP that are comprised of arbitrary metrics and events such as logged time or maintenance activities, which are mined from the underlying source code or issue-tracking data, thus making the description objective as it becomes data-based. Secondly, we demonstrate a novel method to quantify and score the deviations of real-world projects to data-based AP descriptions. Using fifteen real-world projects that exhibit a Fire Drill to some degree, we show how to further enhance the translated AP. The ground truth in these projects was extracted from two individual experts and consensus was found between them. Our evaluation spans four kinds of patterns, where the first is purely derived from description, the second type is enhanced by data, and the third kind is derived from data only. The fourth type then is a derivative meta-process pattern. We introduce a novel method called automatic calibration, that optimizes a pattern such that only necessary and important scores remain that suffice to confidently detect the degree to which the AP is present. Without automatic calibration, the proposed patterns show only weak potential for detecting the presence. Enriching the AP with data from real-world projects significantly improves the potential. We conclude that the presence of similar patterns is most certainly detectable. Furthermore, any pattern that can be characteristically modeled using the proposed approach is potentially well detectable.

Multi-touch attribution (MTA), aiming to estimate the contribution of each advertisement touchpoint in conversion journeys, is essential for budget allocation and automatically advertising. Existing methods first train a model to predict the conversion probability of the advertisement journeys with historical data and calculate the attribution of each touchpoint using counterfactual predictions. An assumption of these works is the conversion prediction model is unbiased, i.e., it can give accurate predictions on any randomly assigned journey, including both the factual and counterfactual ones. Nevertheless, this assumption does not always hold as the exposed advertisements are recommended according to user preferences. This confounding bias of users would lead to an out-of-distribution (OOD) problem in the counterfactual prediction and cause concept drift in attribution. In this paper, we define the causal MTA task and propose CausalMTA to eliminate the influence of user preferences. It systemically eliminates the confounding bias from both static and dynamic preferences to learn the conversion prediction model using historical data. We also provide a theoretical analysis to prove CausalMTA can learn an unbiased prediction model with sufficient data. Extensive experiments on both public datasets and the impression data in an e-commerce company show that CausalMTA not only achieves better prediction performance than the state-of-the-art method but also generates meaningful attribution credits across different advertising channels.

A time-varying zero-inflated serially dependent Poisson process is proposed. The model assumes that the intensity of the Poisson Process evolves according to a generalized autoregressive conditional heteroscedastic (GARCH) formulation. The proposed model is a generalization of the zero-inflated Poisson Integer GARCH model proposed by Fukang Zhu in 2012, which in return is a generalization of the Integer GARCH (INGARCH) model introduced by Ferland, Latour, and Oraichi in 2006. The proposed model builds on previous work by allowing the zero-inflation parameter to vary over time, governed by a deterministic function or by an exogenous variable. Both the Expectation Maximization (EM) and the Maximum Likelihood Estimation (MLE) approaches are presented as possible estimation methods. A simulation study shows that both parameter estimation methods provide good estimates. Applications to two real-life data sets show that the proposed INGARCH model provides a better fit than the traditional zero-inflated INGARCH model in the cases considered.

北京阿比特科技有限公司