亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a game theoretic formulation of a graph traversal problem, with applications to robots moving through hazardous environments in the presence of an adversary, as in military and security scenarios. The blue team of robots moves in an environment modeled by a time-varying graph, attempting to reach some goal with minimum cost, while the red team controls how the graph changes to maximize the cost. The problem is formulated as a stochastic game, so that Nash equilibrium strategies can be computed numerically. Bounds are provided for the game value, with a guarantee that it solves the original problem. Numerical simulations demonstrate the results and the effectiveness of this method, particularly showing the benefit of mixing actions for both players, as well as beneficial coordinated behavior, where blue robots split up and/or synchronize to traverse risky edges.

相關內容

Speculative decoding aims to speed up autoregressive generation of a language model by verifying in parallel the tokens generated by a smaller draft model.In this work, we explore the effectiveness of learning-free, negligible-cost draft strategies, namely $N$-grams obtained from the model weights and the context. While the predicted next token of the base model is rarely the top prediction of these simple strategies, we observe that it is often within their top-$k$ predictions for small $k$. Based on this, we show that combinations of simple strategies can achieve significant inference speedups over different tasks. The overall performance is comparable to more complex methods, yet does not require expensive preprocessing or modification of the base model, and allows for seamless `plug-and-play' integration into pipelines.

This paper delves into the continuous post-training optimization methods for small language models, and proposes a continuous post-training alignment data construction method for small language models. The core of this method is based on the data guidance of large models, optimizing the diversity and accuracy of alignment data. In addition, to verify the effectiveness of the methods in this paper, we used Qwen2-0.5B-Instruct model as the baseline model for small language models, using the alignment dataset constructed by our proposed method, we trained and compared several groups of experiments, including SFT (Supervised Fine Tuning) post-training experiment and KTO (Kahneman Tversky optimization) post-training experiment, as well as SFT-KTO two-stage post-training experiment and model weight fusion experiment. Finally, we evaluated and analyzed the performance of post-training models, and confirmed that the continuous post-training optimization method proposed by us can significantly improve the performance of small language models.

Semantic segmentation models are typically trained on a fixed set of classes, limiting their applicability in open-world scenarios. Class-incremental semantic segmentation aims to update models with emerging new classes while preventing catastrophic forgetting of previously learned ones. However, existing methods impose strict rigidity on old classes, reducing their effectiveness in learning new incremental classes. In this work, we propose Taxonomy-Oriented Poincar\'e-regularized Incremental-Class Segmentation (TOPICS) that learns feature embeddings in hyperbolic space following explicit taxonomy-tree structures. This supervision provides plasticity for old classes, updating ancestors based on new classes while integrating new classes at fitting positions. Additionally, we maintain implicit class relational constraints on the geometric basis of the Poincar\'e ball. This ensures that the latent space can continuously adapt to new constraints while maintaining a robust structure to combat catastrophic forgetting. We also establish eight realistic incremental learning protocols for autonomous driving scenarios, where novel classes can originate from known classes or the background. Extensive evaluations of TOPICS on the Cityscapes and Mapillary Vistas 2.0 benchmarks demonstrate that it achieves state-of-the-art performance. We make the code and trained models publicly available at //topics.cs.uni-freiburg.de.

This paper proposes a novel collocation-type numerical stochastic homogenization method for prototypical stochastic homogenization problems with random coefficient fields of small correlation lengths. The presented method is based on a recently introduced localization technique that enforces a super-exponential decay of the basis functions relative to the underlying coarse mesh, resulting in considerable computational savings during the sampling phase. More generally, the collocation-type structure offers a particularly simple and computationally efficient construction in the stochastic setting with minimized communication between the patches where the basis functions of the method are computed. An error analysis that bridges numerical homogenization and the quantitative theory of stochastic homogenization is performed. In a series of numerical experiments, we study the effect of the correlation length and the discretization parameters on the approximation quality of the method.

We present a novel algorithm for real-time planar semantic mapping tailored for humanoid robots navigating complex terrains such as staircases. Our method is adaptable to any odometry input and leverages GPU-accelerated processes for planar extraction, enabling the rapid generation of globally consistent semantic maps. We utilize an anisotropic diffusion filter on depth images to effectively minimize noise from gradient jumps while preserving essential edge details, enhancing normal vector images' accuracy and smoothness. Both the anisotropic diffusion and the RANSAC-based plane extraction processes are optimized for parallel processing on GPUs, significantly enhancing computational efficiency. Our approach achieves real-time performance, processing single frames at rates exceeding $30~Hz$, which facilitates detailed plane extraction and map management swiftly and efficiently. Extensive testing underscores the algorithm's capabilities in real-time scenarios and demonstrates its practical application in humanoid robot gait planning, significantly improving its ability to navigate dynamic environments.

In this paper, a two-stage intelligent scheduler is proposed to minimize the packet-level delay jitter while guaranteeing delay bound. Firstly, Lyapunov technology is employed to transform the delay-violation constraint into a sequential slot-level queue stability problem. Secondly, a hierarchical scheme is proposed to solve the resource allocation between multiple base stations and users, where the multi-agent reinforcement learning (MARL) gives the user priority and the number of scheduled packets, while the underlying scheduler allocates the resource. Our proposed scheme achieves lower delay jitter and delay violation rate than the Round-Robin Earliest Deadline First algorithm and MARL with delay violation penalty.

A celebrated result in the interface of online learning and game theory guarantees that the repeated interaction of no-regret players leads to a coarse correlated equilibrium (CCE) -- a natural game-theoretic solution concept. Despite the rich history of this foundational problem and the tremendous interest it has received in recent years, a basic question still remains open: how many iterations are needed for no-regret players to approximate an equilibrium? In this paper, we establish the first computational lower bounds for that problem in two-player (general-sum) games under the constraint that the CCE reached approximates the optimal social welfare (or some other natural objective). From a technical standpoint, our approach revolves around proving lower bounds for computing a near-optimal $T$-sparse CCE -- a mixture of $T$ product distributions, thereby circumscribing the iteration complexity of no-regret learning even in the centralized model of computation. Our proof proceeds by extending a classical reduction of Gilboa and Zemel [1989] for optimal Nash to sparse (approximate) CCE. In particular, we show that the inapproximability of maximum clique precludes attaining any non-trivial sparsity in polynomial time. Moreover, we strengthen our hardness results to apply in the low-precision regime as well via the planted clique conjecture.

This paper proposes a distributed pseudo-likelihood method (DPL) to conveniently identify the community structure of large-scale networks. Specifically, we first propose a block-wise splitting method to divide large-scale network data into several subnetworks and distribute them among multiple workers. For simplicity, we assume the classical stochastic block model. Then, the DPL algorithm is iteratively implemented for the distributed optimization of the sum of the local pseudo-likelihood functions. At each iteration, the worker updates its local community labels and communicates with the master. The master then broadcasts the combined estimator to each worker for the new iterative steps. Based on the distributed system, DPL significantly reduces the computational complexity of the traditional pseudo-likelihood method using a single machine. Furthermore, to ensure statistical accuracy, we theoretically discuss the requirements of the worker sample size. Moreover, we extend the DPL method to estimate degree-corrected stochastic block models. The superior performance of the proposed distributed algorithm is demonstrated through extensive numerical studies and real data analysis.

This paper presents a simple yet efficient method for statistical inference of tensor linear forms using incomplete and noisy observations. Under the Tucker low-rank tensor model and the missing-at-random assumption, we utilize an appropriate initial estimate along with a debiasing technique followed by a one-step power iteration to construct an asymptotically normal test statistic. This method is suitable for various statistical inference tasks, including constructing confidence intervals, inference under heteroskedastic and sub-exponential noise, and simultaneous testing. We demonstrate that the estimator achieves the Cram\'er-Rao lower bound on Riemannian manifolds, indicating its optimality in uncertainty quantification. We comprehensively examine the statistical-to-computational gaps and investigate the impact of initialization on the minimal conditions regarding sample size and signal-to-noise ratio required for accurate inference. Our findings show that with independent initialization, statistically optimal sample sizes and signal-to-noise ratios are sufficient for accurate inference. Conversely, if only dependent initialization is available, computationally optimal sample sizes and signal-to-noise ratio conditions still guarantee asymptotic normality without the need for data-splitting. We present the phase transition between computational and statistical limits. Numerical simulation results align with the theoretical findings.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司