亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

These are self-contained lecture notes for spectral independence. For an $n$-vertex graph, the spectral independence condition is a bound on the maximum eigenvalue of the $n\times n$ influence matrix whose entries capture the influence between pairs of vertices, it is closely related to the covariance matrix. We will present recent results showing that spectral independence implies the mixing time of the Glauber dynamics is polynomial (where the degree of the polynomial depends on certain parameters). The proof utilizes local-to-global theorems which we will detail in these notes. Finally, we will present more recent results showing that spectral independence implies an optimal bound on the relaxation time (inverse spectral gap) and with some additional conditions implies an optimal mixing time bound of $O(n\log{n})$ for the Glauber dynamics. Our focus is on the analysis of the spectral gap of the Glauber dynamics from a functional analysis perspective of analyzing the associated local and global variance, and we present proofs of the associated local-to-global theorems from this same Markov chain perspective.

相關內容

We introduce monoidal width as a measure of complexity for morphisms in monoidal categories. Inspired by well-known structural width measures for graphs, like tree width and rank width, monoidal width is based on a notion of syntactic decomposition: a monoidal decomposition of a morphism is an expression in the language of monoidal categories, where operations are monoidal products and compositions, that specifies this morphism. Monoidal width penalises the composition operation along ``big'' objects, while it encourages the use of monoidal products. We show that, by choosing the correct categorical algebra for decomposing graphs, we can capture tree width and rank width. For matrices, monoidal width is related to the rank. These examples suggest monoidal width as a good measure for structural complexity of processes modelled as morphisms in monoidal categories.

Large language models(LLMs) containing tens of billions of parameters (or even more) have demonstrated impressive capabilities in various NLP tasks. However, substantial model size poses challenges to training, inference, and deployment so that it is necessary to compress the model. At present, most model compression for LLMs requires manual design of pruning features, which has problems such as complex optimization pipeline and difficulty in retaining the capabilities of certain parts of the model.Therefore, we propose a novel pruning approach: firstly, a training set of a certain number of architecture-accuracy pairs is established, and then a non-neural model is trained as an accuracy predictor. Using the accuracy predictor to further optimize the search space and search, the optimal model can be automatically selected. Experiments show that our proposed approach is effective and efficient. Compared with the baseline, the perplexity(PPL) on Wikitext2 and PTB dropped by 9.48% and 5,76% respectively, and the average accuracy of MMLU increased by 6.28%.

This paper introduces a dynamic logic extension of separation logic. The assertion language of separation logic is extended with modalities for the five types of the basic instructions of separation logic: simple assignment, look-up, mutation, allocation, and de-allocation. The main novelty of the resulting dynamic logic is that it allows to combine different approaches to resolving these modalities. One such approach is based on the standard weakest precondition calculus of separation logic. The other approach introduced in this paper provides a novel alternative formalization in the proposed dynamic logic extension of separation logic. The soundness and completeness of this axiomatization has been formalized in the Coq theorem prover.

In experimental design, Neyman allocation refers to the practice of allocating subjects into treated and control groups, potentially in unequal numbers proportional to their respective standard deviations, with the objective of minimizing the variance of the treatment effect estimator. This widely recognized approach increases statistical power in scenarios where the treated and control groups have different standard deviations, as is often the case in social experiments, clinical trials, marketing research, and online A/B testing. However, Neyman allocation cannot be implemented unless the standard deviations are known in advance. Fortunately, the multi-stage nature of the aforementioned applications allows the use of earlier stage observations to estimate the standard deviations, which further guide allocation decisions in later stages. In this paper, we introduce a competitive analysis framework to study this multi-stage experimental design problem. We propose a simple adaptive Neyman allocation algorithm, which almost matches the information-theoretic limit of conducting experiments. Using online A/B testing data from a social media site, we demonstrate the effectiveness of our adaptive Neyman allocation algorithm, highlighting its practicality even when applied with only a limited number of stages.

Invariance describes transformations that do not alter data's underlying semantics. Neural networks that preserve natural invariance capture good inductive biases and achieve superior performance. Hence, modern networks are handcrafted to handle well-known invariances (ex. translations). We propose a framework to learn novel network architectures that capture data-dependent invariances via pruning. Our learned architectures consistently outperform dense neural networks on both vision and tabular datasets in both efficiency and effectiveness. We demonstrate our framework on multiple deep learning models across 3 vision and 40 tabular datasets.

We present an approach to modeling an image-space prior on scene dynamics. Our prior is learned from a collection of motion trajectories extracted from real video sequences containing natural, oscillating motion such as trees, flowers, candles, and clothes blowing in the wind. Given a single image, our trained model uses a frequency-coordinated diffusion sampling process to predict a per-pixel long-term motion representation in the Fourier domain, which we call a neural stochastic motion texture. This representation can be converted into dense motion trajectories that span an entire video. Along with an image-based rendering module, these trajectories can be used for a number of downstream applications, such as turning still images into seamlessly looping dynamic videos, or allowing users to realistically interact with objects in real pictures.

The analysis of structured complex data, such as clustered graph based datasets, usually applies a variety of visual representation techniques and formats. The majority of currently available tools and approaches to exploratory visualization are built on integrated schemes for simultaneous displaying of multiple aspects of studying objects and processes. Usually, such schemes partition screen space that is composed of multiple views and adopt interaction patterns to focus on data-driven items. Widely known concepts as overview plus-detail and focus-plus-context are ambiguous in interpretation by means of technical terms. Therefore, their implementation by UI design practitioners need reviews and a classification of the basic approaches to visual composition of graphical representation modules. We propose a description of basic components of the view and focus and an overview of their multiple combinations.

Bayesian predictive inference provides a coherent description of entire predictive uncertainty through predictive distributions. We examine several widely used sparsity priors from the predictive (as opposed to estimation) inference viewpoint. Our context is estimating a predictive distribution of a high-dimensional Gaussian observation with a known variance but an unknown sparse mean under the Kullback-Leibler loss. First, we show that LASSO (Laplace) priors are incapable of achieving rate-optimal performance. This new result contributes to the literature on negative findings about Bayesian LASSO posteriors. However, deploying the Laplace prior inside the Spike-and-Slab framework (for example with the Spike-and-Slab LASSO prior), rate-minimax performance can be attained with properly tuned parameters (depending on the sparsity level sn). We highlight the discrepancy between prior calibration for the purpose of prediction and estimation. Going further, we investigate popular hierarchical priors which are known to attain adaptive rate-minimax performance for estimation. Whether or not they are rate-minimax also for predictive inference has, until now, been unclear. We answer affirmatively by showing that hierarchical Spike-and-Slab priors are adaptive and attain the minimax rate without the knowledge of sn. This is the first rate-adaptive result in the literature on predictive density estimation in sparse setups. This finding celebrates benefits of fully Bayesian inference.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司