亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most of the advanced control systems use sensor-based feedback for robust control. Tilt angle estimation is key feedback for many robotics and mechatronics applications in order to stabilize a system. Tilt angle cannot be directly measured when the system in consideration is not attached to a stationary frame. it is usually estimated through indirect measurements in such systems. The precision of this estimation depends on the measurements; hence it can get expensive and complicated as the precision requirement increases. This research is aimed at developing a novel and economic method to estimate tilt angle with a relatively less sophisticated and complicated system, while maintaining precision in estimating tilt angle. The method is developed to explore a pendulum as an inertial measurement sensor and estimates tilt angle based on dynamics of pendulum and parameter estimation models. Further, algorithms are developed with varying order of complexity and accuracy to have customization for different applications. Furthermore, this study will validate the developed algorithms by experimental testing. This method focuses on developing algorithms to reduce the input measurement error in the Kalman filter.

相關內容

Consistent motion estimation is fundamental for all mobile autonomous systems. While this sounds like an easy task, often, it is not the case because of changing environmental conditions affecting odometry obtained from vision, Lidar, or the wheels themselves. Unsusceptible to challenging lighting and weather conditions, radar sensors are an obvious alternative. Usually, automotive radars return a sparse point cloud, representing the surroundings. Utilizing this information to motion estimation is challenging due to unstable and phantom measurements, which result in a high rate of outliers. We introduce a credible and robust probabilistic approach to estimate the ego-motion based on these challenging radar measurements; intended to be used within a loosely-coupled sensor fusion framework. Compared to existing solutions, evaluated on the popular nuScenes dataset and others, we show that our proposed algorithm is more credible while not depending on explicit correspondence calculation.

The most common sensing modalities found in a robot perception system are vision and touch, which together can provide global and highly localized data for manipulation. However, these sensing modalities often fail to adequately capture the behavior of target objects during the critical moments as they transition out of static, controlled contact with an end-effector to dynamic and uncontrolled motion. In this work, we present a novel multimodal visuotactile sensor that provides simultaneous visuotactile and proximity depth data. The sensor integrates an RGB camera and air pressure sensor to sense touch with an infrared time-of-flight (ToF) camera to sense proximity by leveraging a selectively transmissive soft membrane to enable the dual sensing modalities. We present the mechanical design, fabrication techniques, algorithm implementations, and evaluation of the sensor's tactile and proximity modalities. The sensor is demonstrated in three open-loop robotic tasks: approaching and contacting an object, catching, and throwing. The fusion of tactile and proximity data could be used to capture key information about a target object's transition behavior for sensor-based control in dynamic manipulation.

Many recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms by encouraging iterative refinements toward a stable flow estimation. However, these RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation. They can converge poorly and thereby suffer from performance degradation. To combat these drawbacks, we propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer (using any black-box solver), and differentiates through this fixed point analytically (thus requiring $O(1)$ training memory). This implicit-depth approach is not predicated on any specific model, and thus can be applied to a wide range of SOTA flow estimation model designs. The use of these DEQ flow estimators allows us to compute the flow faster using, e.g., fixed-point reuse and inexact gradients, consumes $4\sim6\times$ times less training memory than the recurrent counterpart, and achieves better results with the same computation budget. In addition, we propose a novel, sparse fixed-point correction scheme to stabilize our DEQ flow estimators, which addresses a longstanding challenge for DEQ models in general. We test our approach in various realistic settings and show that it improves SOTA methods on Sintel and KITTI datasets with substantially better computational and memory efficiency.

We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on $n$ independent replicates $\left\{X_i(t)\::\: t\in [0,1]\right\}_{1 \leq i \leq n}$, observed sparsely and irregularly on the unit interval, and subject to additive noise corruption. By \textit{sparse} we intend to mean that the number of measurements per path can be arbitrary (as small as two), and remain constant with respect to $n$. We focus on time-inhomogeneous SDE of the form $dX_t = \mu(t)X_t^{\alpha}dt + \sigma(t)X_t^{\beta}dW_t$, where $\alpha \in \{0,1\}$ and $\beta \in \{0,1/2,1\}$, which includes prominent examples such as Brownian motion, Ornstein-Uhlenbeck process, geometric Brownian motion, and Brownian bridge. Our estimators are constructed by relating the local (drift/diffusion) parameters of the diffusion to their global parameters (mean/covariance, and their derivatives) by means of an apparently novel PDE. This allows us to use methods inspired by functional data analysis, and pool information across the sparsely measured paths. The methodology we develop is fully non-parametric and avoids any functional form specification on the time-dependency of either the drift function or the diffusion function. We establish almost sure uniform asymptotic convergence rates of the proposed estimators as the number of observed curves $n$ grows to infinity. Our rates are non-asymptotic in the number of measurements per path, explicitly reflecting how different sampling frequency might affect the speed of convergence. Our framework suggests possible further fruitful interactions between FDA and SDE methods in problems with replication.

We study the performance of a phase-noise impaired double reconfigurable intelligent surface (RIS)-aided multiuser (MU) multiple-input single-output (MISO) system under spatial correlation at both RISs and base-station (BS). The downlink achievable rate is derived in closed-form under maximum ratio transmission (MRT) precoding. In addition, we obtain the optimal phase-shift design at both RISs in closed-form for the considered channel and phase-noise models. Numerical results validate the analytical expressions, and highlight the effects of different system parameters on the achievable rate. Our analysis shows that phase-noise can severely degrade the performance when users do not have direct links to both RISs, and can only be served via the double-reflection link. Also, we show that high spatial correlation at RISs is essential for high achievable rates.

An important challenge in statistical analysis lies in controlling the estimation bias when handling the ever-increasing data size and model complexity. For example, approximate methods are increasingly used to address the analytical and/or computational challenges when implementing standard estimators, but they often lead to inconsistent estimators. So consistent estimators can be difficult to obtain, especially for complex models and/or in settings where the number of parameters diverges with the sample size. We propose a general simulation-based estimation framework that allows to construct consistent and bias corrected estimators for parameters of increasing dimensions. The key advantage of the proposed framework is that it only requires to compute a simple inconsistent estimator multiple times. The resulting Just Identified iNdirect Inference estimator (JINI) enjoys nice properties, including consistency, asymptotic normality, and finite sample bias correction better than alternative methods. We further provide a simple algorithm to construct the JINI in a computationally efficient manner. Therefore, the JINI is especially useful in settings where standard methods may be challenging to apply, for example, in the presence of misclassification and rounding. We consider comprehensive simulation studies and analyze an alcohol consumption data example to illustrate the excellent performance and usefulness of the method.

The simulation of multi-body systems with frictional contacts is a fundamental tool for many fields, such as robotics, computer graphics, and mechanics. Hard frictional contacts are particularly troublesome to simulate because they make the differential equations stiff, calling for computationally demanding implicit integration schemes. We suggest to tackle this issue by using exponential integrators, a long-standing class of integration schemes (first introduced in the 60's) that in recent years has enjoyed a resurgence of interest. We show that this scheme can be easily applied to multi-body systems subject to stiff viscoelastic contacts, producing accurate results at lower computational cost than \changed{classic explicit or implicit schemes}. In our tests with quadruped and biped robots, our method demonstrated stable behaviors with large time steps (10 ms) and stiff contacts ($10^5$ N/m). Its excellent properties, especially for fast and coarse simulations, make it a valuable candidate for many applications in robotics, such as simulation, Model Predictive Control, Reinforcement Learning, and controller design.

The fact that the millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel has sparse support in the spatial domain has motivated recent compressed sensing (CS)-based mmWave channel estimation methods, where the angles of arrivals (AoAs) and angles of departures (AoDs) are quantized using angle dictionary matrices. However, the existing CS-based methods usually obtain the estimation result through one-stage channel sounding that have two limitations: (i) the requirement of large-dimensional dictionary and (ii) unresolvable quantization error. These two drawbacks are irreconcilable; improvement of the one implies deterioration of the other. To address these challenges, we propose, in this paper, a two-stage method to estimate the AoAs and AoDs of mmWave channels. In the proposed method, the channel estimation task is divided into two stages, Stage I and Stage II. Specifically, in Stage I, the AoAs are estimated by solving a multiple measurement vectors (MMV) problem. In Stage II, based on the estimated AoAs, the receive sounders are designed to estimate AoDs. The dimension of the angle dictionary in each stage can be reduced, which in turn reduces the computational complexity substantially. We then analyze the successful recovery probability (SRP) of the proposed method, revealing the superiority of the proposed framework over the existing one-stage CS-based methods. We further enhance the reconstruction performance by performing resource allocation between the two stages. We also overcome the unresolvable quantization error issue present in the prior techniques by applying the atomic norm minimization method to each stage of the proposed two-stage approach. The simulation results illustrate the substantially improved performance with low complexity of the proposed two-stage method.

One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.

Sufficient dimension reduction (SDR) is a successful tool in regression models. It is a feasible method to solve and analyze the nonlinear nature of the regression problems. This paper introduces the \textbf{itdr} R package that provides several functions based on integral transformation methods to estimate the SDR subspaces in a comprehensive and user-friendly manner. In particular, the \textbf{itdr} package includes the Fourier method (FM) and the convolution method (CM) of estimating the SDR subspaces such as the central mean subspace (CMS) and the central subspace (CS). In addition, the \textbf{itdr} package facilitates the recovery of the CMS and the CS by using the iterative Hessian transformation (IHT) method and the Fourier transformation approach for inverse dimension reduction method (invFM), respectively. Moreover, the use of the package is illustrated by three datasets. \textcolor{black}{Furthermore, this is the first package that implements integral transformation methods to estimate SDR subspaces. Hence, the \textbf{itdr} package may provide a huge contribution to research in the SDR field.

北京阿比特科技有限公司