High-fidelity simulators that connect theoretical models with observations are indispensable tools in many sciences. When coupled with machine learning, a simulator makes it possible to infer the parameters of a theoretical model directly from real and simulated observations without explicit use of the likelihood function. This is of particular interest when the latter is intractable. In this work, we introduce a simple extension of the recently proposed likelihood-free frequentist inference (LF2I) approach that has some computational advantages. Like LF2I, this extension yields provably valid confidence sets in parameter inference problems in which a high-fidelity simulator is available. The utility of our algorithm is illustrated by applying it to three pedagogically interesting examples: the first is from cosmology, the second from high-energy physics and astronomy, both with tractable likelihoods, while the third, with an intractable likelihood, is from epidemiology.
State space models (SSMs) are widely used to describe dynamic systems. However, when the likelihood of the observations is intractable, parameter inference for SSMs cannot be easily carried out using standard Markov chain Monte Carlo or sequential Monte Carlo methods. In this paper, we propose a particle Gibbs sampler as a general strategy to handle SSMs with intractable likelihoods in the approximate Bayesian computation (ABC) setting. The proposed sampler incorporates a conditional auxiliary particle filter, which can help mitigate the weight degeneracy often encountered in ABC. To illustrate the methodology, we focus on a classic stochastic volatility model (SVM) used in finance and econometrics for analyzing and interpreting volatility. Simulation studies demonstrate the accuracy of our sampler for SVM parameter inference, compared to existing particle Gibbs samplers based on the conditional bootstrap filter. As a real data application, we apply the proposed sampler for fitting an SVM to S&P 500 Index time-series data during the 2008 financial crisis.
We propose a framework for descriptively analyzing sets of partial orders based on the concept of depth functions. Despite intensive studies in linear and metric spaces, there is very little discussion on depth functions for non-standard data types such as partial orders. We introduce an adaptation of the well-known simplicial depth to the set of all partial orders, the union-free generic (ufg) depth. Moreover, we utilize our ufg depth for a comparison of machine learning algorithms based on multidimensional performance measures. Concretely, we provide two examples of classifier comparisons on samples of standard benchmark data sets. Our results demonstrate promisingly the wide variety of different analysis approaches based on ufg methods. Furthermore, the examples outline that our approach differs substantially from existing benchmarking approaches, and thus adds a new perspective to the vivid debate on classifier comparison.
We propose to use a simulation driven inverse inference approach to model the dynamics of tree branches under manipulation. Learning branch dynamics and gaining the ability to manipulate deformable vegetation can help with occlusion-prone tasks, such as fruit picking in dense foliage, as well as moving overhanging vines and branches for navigation in dense vegetation. The underlying deformable tree geometry is encapsulated as coarse spring abstractions executed on parallel, non-differentiable simulators. The implicit statistical model defined by the simulator, reference trajectories obtained by actively probing the ground truth, and the Bayesian formalism, together guide the spring parameter posterior density estimation. Our non-parametric inference algorithm, based on Stein Variational Gradient Descent, incorporates biologically motivated assumptions into the inference process as neural network driven learnt joint priors; moreover, it leverages the finite difference scheme for gradient approximations. Real and simulated experiments confirm that our model can predict deformation trajectories, quantify the estimation uncertainty, and it can perform better when base-lined against other inference algorithms, particularly from the Monte Carlo family. The model displays strong robustness properties in the presence of heteroscedastic sensor noise; furthermore, it can generalise to unseen grasp locations.
Electromagnetic transient (EMT) simulation is a crucial tool for power system dynamic analysis because of its detailed component modeling and high simulation accuracy. However, it suffers from computational burdens for large power grids since a tiny time step is typically required for accuracy. This paper proposes an efficient and accurate semi-analytical approach for state-space EMT simulations of power grids. It employs high-order semi-analytical solutions derived using the differential transformation from the state-space EMT grid model. The approach incorporates a proposed variable time step strategy based on equation imbalance, leveraging structural information of the grid model, to enlarge the time step and accelerate simulations, while high resolution is maintained by reconstructing detailed fast EMT dynamics through an efficient dense output mechanism. It also addresses limit-induced switches during large time steps by using a binary search-enhanced quadratic interpolation algorithm. Case studies are conducted on EMT models of the IEEE 39-bus system and a synthetic 390-bus system to demonstrate the merits of the new simulation approach against traditional methods.
We consider the problem of inferring latent stochastic differential equations (SDEs) with a time and memory cost that scales independently with the amount of data, the total length of the time series, and the stiffness of the approximate differential equations. This is in stark contrast to typical methods for inferring latent differential equations which, despite their constant memory cost, have a time complexity that is heavily dependent on the stiffness of the approximate differential equation. We achieve this computational advancement by removing the need to solve differential equations when approximating gradients using a novel amortization strategy coupled with a recently derived reparametrization of expectations under linear SDEs. We show that, in practice, this allows us to achieve similar performance to methods based on adjoint sensitivities with more than an order of magnitude fewer evaluations of the model in training.
Many applications, such as optimization, uncertainty quantification and inverse problems, require repeatedly performing simulations of large-dimensional physical systems for different choices of parameters. This can be prohibitively expensive. In order to save computational cost, one can construct surrogate models by expressing the system in a low-dimensional basis, obtained from training data. This is referred to as model reduction. Past investigations have shown that, when performing model reduction of Hamiltonian systems, it is crucial to preserve the symplectic structure associated with the system in order to ensure long-term numerical stability. Up to this point structure-preserving reductions have largely been limited to linear transformations. We propose a new neural network architecture in the spirit of autoencoders, which are established tools for dimension reduction and feature extraction in data science, to obtain more general mappings. In order to train the network, a non-standard gradient descent approach is applied that leverages the differential-geometric structure emerging from the network design. The new architecture is shown to significantly outperform existing designs in accuracy.
Many functions characterising physical systems are additively separable. This is the case, for instance, of mechanical Hamiltonian functions in physics, population growth equations in biology, and consumer preference and utility functions in economics. We consider the scenario in which a surrogate of a function is to be tested for additive separability. The detection that the surrogate is additively separable can be leveraged to improve further learning. Hence, it is beneficial to have the ability to test for such separability in surrogates. The mathematical approach is to test if the mixed partial derivative of the surrogate is zero; or empirically, lower than a threshold. We present and comparatively and empirically evaluate the eight methods to compute the mixed partial derivative of a surrogate function.
Dimensional analysis (DA) pays attention to fundamental physical dimensions such as length and mass when modelling scientific and engineering systems. It goes back at least a century to Buckingham's Pi theorem, which characterizes a scientifically meaningful model in terms of a limited number of dimensionless variables. The methodology has only been exploited relatively recently by statisticians for design and analysis of experiments, however, and computer experiments in particular. The basic idea is to build models in terms of new dimensionless quantities derived from the original input and output variables. A scientifically valid formulation has the potential for improved prediction accuracy in principle, but the implementation of DA is far from straightforward. There can be a combinatorial number of possible models satisfying the conditions of the theory. Empirical approaches for finding effective derived variables will be described, and improvements in prediction accuracy will be demonstrated. As DA's dimensionless quantities for a statistical model typically compare the original variables rather than use their absolute magnitudes, DA is less dependent on the choice of experimental ranges in the training data. Hence, we are also able to illustrate sustained accuracy gains even when extrapolating substantially outside the training data.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.
While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.