Bayesian persuasion is a model for understanding strategic information revelation: an agent with an informational advantage, called a sender, strategically discloses information by sending signals to another agent, called a receiver. In algorithmic Bayesian persuasion, we are interested in efficiently designing the sender's signaling schemes that lead the receiver to take action in favor of the sender. This paper studies algorithmic Bayesian-persuasion settings where the receiver's feasible actions are specified by combinatorial constraints, e.g., matroids or paths in graphs. We first show that constant-factor approximation is NP-hard even in some special cases of matroids or paths. We then propose a polynomial-time algorithm for general matroids by assuming the number of states of nature to be a constant. We finally consider a relaxed notion of persuasiveness, called CCE-persuasiveness, and present a sufficient condition for polynomial-time approximability.
Safe reinforcement learning (RL) is still very challenging since it requires the agent to consider both return maximization and safe exploration. In this paper, we propose CUP, a Conservative Update Policy algorithm with a theoretical safety guarantee. We derive the CUP based on the new proposed performance bounds and surrogate functions. Although using bounds as surrogate functions to design safe RL algorithms have appeared in some existing works, we develop them at least three aspects: (i) We provide a rigorous theoretical analysis to extend the surrogate functions to generalized advantage estimator (GAE). GAE significantly reduces variance empirically while maintaining a tolerable level of bias, which is an efficient step for us to design CUP; (ii) The proposed bounds are tighter than existing works, i.e., using the proposed bounds as surrogate functions are better local approximations to the objective and safety constraints. (iii) The proposed CUP provides a non-convex implementation via first-order optimizers, which does not depend on any convex approximation. Finally, extensive experiments show the effectiveness of CUP where the agent satisfies safe constraints. We have opened the source code of CUP at //github.com/RL-boxes/Safe-RL.
We describe an efficient algorithm to compute solutions for the general two-player Blotto game on n battlefields with heterogeneous values. While explicit constructions for such solutions have been limited to specific, largely symmetric or homogeneous, setups, this algorithmic resolution covers the most general situation to date: value-asymmetric game with asymmetric budget. The proposed algorithm rests on recent theoretical advances regarding Sinkhorn iterations for matrix and tensor scaling. An important case which had been out of reach of previous attempts is that of heterogeneous but symmetric battlefield values with asymmetric budget. In this case, the Blotto game is constant-sum so optimal solutions exist, and our algorithm samples from an \eps-optimal solution in time O(n^2 + \eps^{-4}), independently of budgets and battlefield values. In the case of asymmetric values where optimal solutions need not exist but Nash equilibria do, our algorithm samples from an \eps-Nash equilibrium with similar complexity but where implicit constants depend on various parameters of the game such as battlefield values.
This work shows that a diverse collection of linear optimization methods, when run on general data, fail to overfit, despite lacking any explicit constraints or regularization: with high probability, their trajectories stay near the curve of optimal constrained solutions over the population distribution. This analysis is powered by an elementary but flexible proof scheme which can handle many settings, summarized as follows. Firstly, the data can be general: unlike other implicit bias works, it need not satisfy large margin or other structural conditions, and moreover can arrive sequentially IID, sequentially following a Markov chain, as a batch, and lastly it can have heavy tails. Secondly, while the main analysis is for mirror descent, rates are also provided for the Temporal-Difference fixed-point method from reinforcement learning; all prior high probability analyses in these settings required bounded iterates, bounded updates, bounded noise, or some equivalent. Thirdly, the losses are general, and for instance the logistic and squared losses can be handled simultaneously, unlike other implicit bias works. In all of these settings, not only is low population error guaranteed with high probability, but moreover low sample complexity is guaranteed so long as there exists any low-complexity near-optimal solution, even if the global problem structure and in particular global optima have high complexity.
In this paper, we investigate the problem of computing Bayesian estimators using Langevin Monte-Carlo type approximation. The novelty of this paper is to consider together the statistical and numerical counterparts (in a general log-concave setting). More precisely, we address the following question: given $n$ observations in $\mathbb{R}^q$ distributed under an unknown probability $\mathbb{P}_{\theta^\star}$ with $\theta^\star \in \mathbb{R}^d$ , what is the optimal numerical strategy and its cost for the approximation of $\theta^\star$ with the Bayesian posterior mean? To answer this question, we establish some quantitative statistical bounds related to the underlying Poincar\'e constant of the model and establish new results about the numerical approximation of Gibbs measures by Cesaro averages of Euler schemes of (over-damped) Langevin diffusions. These last results include in particular some quantitative controls in the weakly convex case based on new bounds on the solution of the related Poisson equation of the diffusion.
We consider the problem introduced by \cite{Mason2020} of identifying all the $\varepsilon$-optimal arms in a finite stochastic multi-armed bandit with Gaussian rewards. In the fixed confidence setting, we give a lower bound on the number of samples required by any algorithm that returns the set of $\varepsilon$-good arms with a failure probability less than some risk level $\delta$. This bound writes as $T_{\varepsilon}^*(\mu)\log(1/\delta)$, where $T_{\varepsilon}^*(\mu)$ is a characteristic time that depends on the vector of mean rewards $\mu$ and the accuracy parameter $\varepsilon$. We also provide an efficient numerical method to solve the convex max-min program that defines the characteristic time. Our method is based on a complete characterization of the alternative bandit instances that the optimal sampling strategy needs to rule out, thus making our bound tighter than the one provided by \cite{Mason2020}. Using this method, we propose a Track-and-Stop algorithm that identifies the set of $\varepsilon$-good arms w.h.p and enjoys asymptotic optimality (when $\delta$ goes to zero) in terms of the expected sample complexity. Finally, using numerical simulations, we demonstrate our algorithm's advantage over state-of-the-art methods, even for moderate values of the risk parameter.
We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of rooted, bounded degree graphs under a vertex-percolation subcriticality condition. We show that this subcriticality condition is optimal in the sense that the problem of (approximately) sampling weighted rooted graphlets becomes impossible for infinite graphs and intractable for finite graphs if the condition does not hold. We apply our rooted graphlet sampling algorithm as a subroutine to give a fast perfect sampling algorithm for polymer models and a fast perfect sampling algorithm for weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. We apply this polymer model algorithm to give improved sampling algorithms for spin systems at low temperatures on expander graphs and other structured families of graphs: under the least restrictive conditions known we give near linear-time algorithms, while previous algorithms in these regimes required large polynomial running times.
Reinforcement learning with function approximation has recently achieved tremendous results in applications with large state spaces. This empirical success has motivated a growing body of theoretical work proposing necessary and sufficient conditions under which efficient reinforcement learning is possible. From this line of work, a remarkably simple minimal sufficient condition has emerged for sample efficient reinforcement learning: MDPs with optimal value function $V^*$ and $Q^*$ linear in some known low-dimensional features. In this setting, recent works have designed sample efficient algorithms which require a number of samples polynomial in the feature dimension and independent of the size of state space. They however leave finding computationally efficient algorithms as future work and this is considered a major open problem in the community. In this work, we make progress on this open problem by presenting the first computational lower bound for RL with linear function approximation: unless NP=RP, no randomized polynomial time algorithm exists for deterministic transition MDPs with a constant number of actions and linear optimal value functions. To prove this, we show a reduction from Unique-Sat, where we convert a CNF formula into an MDP with deterministic transitions, constant number of actions and low dimensional linear optimal value functions. This result also exhibits the first computational-statistical gap in reinforcement learning with linear function approximation, as the underlying statistical problem is information-theoretically solvable with a polynomial number of queries, but no computationally efficient algorithm exists unless NP=RP. Finally, we also prove a quasi-polynomial time lower bound under the Randomized Exponential Time Hypothesis.
Many well-established anomaly detection methods use the distance of a sample to those in its local neighbourhood: so-called `local outlier methods', such as LOF and DBSCAN. They are popular for their simple principles and strong performance on unstructured, feature-based data that is commonplace in many practical applications. However, they cannot learn to adapt for a particular set of data due to their lack of trainable parameters. In this paper, we begin by unifying local outlier methods by showing that they are particular cases of the more general message passing framework used in graph neural networks. This allows us to introduce learnability into local outlier methods, in the form of a neural network, for greater flexibility and expressivity: specifically, we propose LUNAR, a novel, graph neural network-based anomaly detection method. LUNAR learns to use information from the nearest neighbours of each node in a trainable way to find anomalies. We show that our method performs significantly better than existing local outlier methods, as well as state-of-the-art deep baselines. We also show that the performance of our method is much more robust to different settings of the local neighbourhood size.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.