亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The logic of information flows (LIF) has recently been proposed as a general framework in the field of knowledge representation. In this framework, tasks of procedural nature can still be modeled in a declarative, logic-based fashion. In this paper, we focus on the task of query processing under limited access patterns, a well-studied problem in the database literature. We show that LIF is well-suited for modeling this task. Toward this goal, we introduce a variant of LIF called "forward" LIF (FLIF), in a first-order setting. FLIF takes a novel graph-navigational approach; it is an XPath-like language that nevertheless turns out to be equivalent to the "executable" fragment of first-order logic defined by Nash and Lud\"ascher. One can also classify the variables in FLIF expressions as inputs and outputs. Expressions where inputs and outputs are disjoint, referred to as io-disjoint FLIF expressions, allow a particularly transparent translation into algebraic query plans that respect the access limitations. Finally, we show that general FLIF expressions can always be put into io-disjoint form.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · CASE · Analysis · · MoDELS ·
2024 年 3 月 5 日

Missing data in multiple variables is a common issue. We investigate the applicability of the framework of graphical models for handling missing data to a complex longitudinal pharmacological study of children with HIV treated with an efavirenz-based regimen as part of the CHAPAS-3 trial. Specifically, we examine whether the causal effects of interest, defined through static interventions on multiple continuous variables, can be recovered (estimated consistently) from the available data only. So far, no general algorithms are available to decide on recoverability, and decisions have to be made on a case-by-case basis. We emphasize sensitivity of recoverability to even the smallest changes in the graph structure, and present recoverability results for three plausible missingness directed acyclic graphs (m-DAGs) in the CHAPAS-3 study, informed by clinical knowledge. Furthermore, we propose the concept of "closed missingness mechanisms" and show that under these mechanisms an available case analysis is admissible for consistent estimation for any type of statistical and causal query, even if the underlying missingness mechanism is of missing not at random (MNAR) type. Both simulations and theoretical considerations demonstrate how, in the assumed MNAR setting of our study, a complete or available case analysis can be superior to multiple imputation, and estimation results vary depending on the assumed missingness DAG. Our analyses are possibly the first to show the applicability of missingness DAGs (m-DAGs) to complex longitudinal real-world data, while highlighting the sensitivity with respect to the assumed causal model.

Accurate and high-resolution Earth system model (ESM) simulations are essential to assess the ecological and socio-economic impacts of anthropogenic climate change, but are computationally too expensive. Recent machine learning approaches have shown promising results in downscaling ESM simulations, outperforming state-of-the-art statistical approaches. However, existing methods require computationally costly retraining for each ESM and extrapolate poorly to climates unseen during training. We address these shortcomings by learning a consistency model (CM) that efficiently and accurately downscales arbitrary ESM simulations without retraining in a zero-shot manner. Our foundation model approach yields probabilistic downscaled fields at resolution only limited by the observational reference data. We show that the CM outperforms state-of-the-art diffusion models at a fraction of computational cost while maintaining high controllability on the downscaling task. Further, our method generalizes to climate states unseen during training without explicitly formulated physical constraints.

A significant amount of research is focused on developing and evaluating large language models for a variety of code synthesis tasks. These include synthesizing code from natural language instructions, synthesizing tests from code, and synthesizing explanations of code. In contrast, the behavior of instructional code editing with LLMs is understudied. These are tasks in which the model is instructed to update a block of code provided in a prompt. The editing instruction may ask for a feature to added or removed, describe a bug and ask for a fix, ask for a different kind of solution, or many other common code editing tasks. We introduce a carefully crafted benchmark of code editing tasks and use it evaluate several cutting edge LLMs. Our evaluation exposes a significant gap between the capabilities of state-of-the-art open and closed models. For example, even GPT-3.5-Turbo is 8.8% better than the best open model at editing code. We also introduce a new, carefully curated, permissively licensed training set of code edits coupled with natural language instructions. Using this training set, we show that we can fine-tune open Code LLMs to significantly improve their code editing capabilities.

We propose a method to represent bipartite networks using graph embeddings tailored to tackle the challenges of studying ecological networks, such as the ones linking plants and pollinators, where many covariates need to be accounted for, in particular to control for sampling bias. We adapt the variational graph auto-encoder approach to the bipartite case, which enables us to generate embeddings in a latent space where the two sets of nodes are positioned based on their probability of connection. We translate the fairness framework commonly considered in sociology in order to address sampling bias in ecology. By incorporating the Hilbert-Schmidt independence criterion (HSIC) as an additional penalty term in the loss we optimize, we ensure that the structure of the latent space is independent of continuous variables, which are related to the sampling process. Finally, we show how our approach can change our understanding of ecological networks when applied to the Spipoll data set, a citizen science monitoring program of plant-pollinator interactions to which many observers contribute, making it prone to sampling bias.

Likelihood-based deep generative models such as score-based diffusion models and variational autoencoders are state-of-the-art machine learning models approximating high-dimensional distributions of data such as images, text, or audio. One of many downstream tasks they can be naturally applied to is out-of-distribution (OOD) detection. However, seminal work by Nalisnick et al. which we reproduce showed that deep generative models consistently infer higher log-likelihoods for OOD data than data they were trained on, marking an open problem. In this work, we analyse using the gradient of a data point with respect to the parameters of the deep generative model for OOD detection, based on the simple intuition that OOD data should have larger gradient norms than training data. We formalise measuring the size of the gradient as approximating the Fisher information metric. We show that the Fisher information matrix (FIM) has large absolute diagonal values, motivating the use of chi-square distributed, layer-wise gradient norms as features. We combine these features to make a simple, model-agnostic and hyperparameter-free method for OOD detection which estimates the joint density of the layer-wise gradient norms for a given data point. We find that these layer-wise gradient norms are weakly correlated, rendering their combined usage informative, and prove that the layer-wise gradient norms satisfy the principle of (data representation) invariance. Our empirical results indicate that this method outperforms the Typicality test for most deep generative models and image dataset pairings.

We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2-layer networks with piecewise linear activations, deep narrow ReLU networks with up to 4 layers, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in ReLU networks, a fourth layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司