亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most existing salient object detection methods mostly use U-Net or feature pyramid structure, which simply aggregates feature maps of different scales, ignoring the uniqueness and interdependence of them and their respective contributions to the final prediction. To overcome these, we propose the M$^3$Net, i.e., the Multilevel, Mixed and Multistage attention network for Salient Object Detection (SOD). Firstly, we propose Multiscale Interaction Block which innovatively introduces the cross-attention approach to achieve the interaction between multilevel features, allowing high-level features to guide low-level feature learning and thus enhancing salient regions. Secondly, considering the fact that previous Transformer based SOD methods locate salient regions only using global self-attention while inevitably overlooking the details of complex objects, we propose the Mixed Attention Block. This block combines global self-attention and window self-attention, aiming at modeling context at both global and local levels to further improve the accuracy of the prediction map. Finally, we proposed a multilevel supervision strategy to optimize the aggregated feature stage-by-stage. Experiments on six challenging datasets demonstrate that the proposed M$^3$Net surpasses recent CNN and Transformer-based SOD arts in terms of four metrics. Codes are available at //github.com/I2-Multimedia-Lab/M3Net.

相關內容

超氧化物歧化酶(Superoxide dismutase,SOD)是(shi)生物體系中抗氧化酶系的(de)重要組成成員(yuan),廣泛分布在微生物、植物和動物體內

Feature extraction and matching are the basic parts of many robotic vision tasks, such as 2D or 3D object detection, recognition, and registration. As known, 2D feature extraction and matching have already been achieved great success. Unfortunately, in the field of 3D, the current methods fail to support the extensive application of 3D LiDAR sensors in robotic vision tasks, due to the poor descriptiveness and inefficiency. To address this limitation, we propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D. The novelty of LinK3D lies in that it fully considers the characteristics (such as the sparsity, and complexity of scenes) of LiDAR point clouds, and represents the keypoint with its robust neighbor keypoints, which provide strong distinction in the description of the keypoint. The proposed LinK3D has been evaluated on two public datasets (i.e., KITTI, Steven VLP16), and the experimental results show that our method greatly outperforms the state-of-the-art in matching performance. More importantly, LinK3D shows excellent real-time performance, faster than the sensor frame rate at 10 Hz of a typical rotating LiDAR sensor. LinK3D only takes an average of 32 milliseconds to extract features from the point cloud collected by a 64-beam LiDAR, and takes merely about 8 milliseconds to match two LiDAR scans when executed in a notebook with an Intel Core i7 @2.2 GHz processor. Moreover, our method can be widely extended to various 3D vision applications. In this paper, we apply the proposed LinK3D to the LiDAR odometry and place recognition task of LiDAR SLAM. The experimental results show that our method can improve the efficiency and accuracy of LiDAR SLAM system.

Widely-used LiDAR-based 3D object detectors often neglect fundamental geometric information readily available from the object proposals in their confidence estimation. This is mostly due to architectural design choices, which were often adopted from the 2D image domain, where geometric context is rarely available. In 3D, however, considering the object properties and its surroundings in a holistic way is important to distinguish between true and false positive detections, e.g. occluded pedestrians in a group. To address this, we present GACE, an intuitive and highly efficient method to improve the confidence estimation of a given black-box 3D object detector. We aggregate geometric cues of detections and their spatial relationships, which enables us to properly assess their plausibility and consequently, improve the confidence estimation. This leads to consistent performance gains over a variety of state-of-the-art detectors. Across all evaluated detectors, GACE proves to be especially beneficial for the vulnerable road user classes, i.e. pedestrians and cyclists.

Differentially private (DP) machine learning algorithms incur many sources of randomness, such as random initialization, random batch subsampling, and shuffling. However, such randomness is difficult to take into account when proving differential privacy bounds because it induces mixture distributions for the algorithm's output that are difficult to analyze. This paper focuses on improving privacy bounds for shuffling models and one-iteration differentially private gradient descent (DP-GD) with random initializations using $f$-DP. We derive a closed-form expression of the trade-off function for shuffling models that outperforms the most up-to-date results based on $(\epsilon,\delta)$-DP. Moreover, we investigate the effects of random initialization on the privacy of one-iteration DP-GD. Our numerical computations of the trade-off function indicate that random initialization can enhance the privacy of DP-GD. Our analysis of $f$-DP guarantees for these mixture mechanisms relies on an inequality for trade-off functions introduced in this paper. This inequality implies the joint convexity of $F$-divergences. Finally, we study an $f$-DP analog of the advanced joint convexity of the hockey-stick divergence related to $(\epsilon,\delta)$-DP and apply it to analyze the privacy of mixture mechanisms.

Finding synthetic artifacts of spoofing data will help the anti-spoofing countermeasures (CMs) system discriminate between spoofed and real speech. The Conformer combines the best of convolutional neural network and the Transformer, allowing it to aggregate global and local information. This may benefit the CM system to capture the synthetic artifacts hidden both locally and globally. In this paper, we present the transfer learning based MFA-Conformer structure for CM systems. By pre-training the Conformer encoder with different tasks, the robustness of the CM system is enhanced. The proposed method is evaluated on both Chinese and English spoofing detection databases. In the FAD clean set, proposed method achieves an EER of 0.04%, which dramatically outperforms the baseline. Our system is also comparable to the pre-training methods base on Wav2Vec 2.0. Moreover, we also provide a detailed analysis of the robustness of different models.

Design-based causal inference is one of the most widely used frameworks for testing causal null hypotheses or inferring about causal parameters from experimental or observational data. The most significant merit of design-based causal inference is that its statistical validity only comes from the study design (e.g., randomization design) and does not require assuming any outcome-generating distributions or models. Although immune to model misspecification, design-based causal inference can still suffer from other data challenges, among which missingness in outcomes is a significant one. However, compared with model-based causal inference, outcome missingness in design-based causal inference is much less studied, largely due to the challenge that design-based causal inference does not assume any outcome distributions/models and, therefore, cannot directly adopt any existing model-based approaches for missing data. To fill this gap, we systematically study the missing outcomes problem in design-based causal inference. First, we use the potential outcomes framework to clarify the minimal assumption (concerning the outcome missingness mechanism) needed for conducting finite-population-exact randomization tests for the null effect (i.e., Fisher's sharp null) and that needed for constructing finite-population-exact confidence sets with missing outcomes. Second, we propose a general framework called ``imputation and re-imputation" for conducting finite-population-exact randomization tests in design-based causal studies with missing outcomes. Our framework can incorporate any existing outcome imputation algorithms and meanwhile guarantee finite-population-exact type-I error rate control. Third, we extend our framework to conduct covariate adjustment in an exact randomization test with missing outcomes and to construct finite-population-exact confidence sets with missing outcomes.

The minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost $f(\cdot)$ due to an ordering $\sigma$ of the items (say $[n]$), i.e., $\min_{\sigma} \sum_{i\in [n]} f(E_{i,\sigma})$, where $E_{i,\sigma}$ is the set of items mapped by $\sigma$ to indices $[i]$. Despite an extensive literature on MLOP variants and approximations for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle this question through non-trivial reductions from mininimum latency vertex cover and minimum sum vertex cover problems. We further propose a new combinatorial algorithm for approximating monotone submodular MLOP, using the theory of principal partitions. This is in contrast to the rounding algorithm by Iwata, Tetali, and Tripathi [ITT2012], using Lov\'asz extension of submodular functions. We show a $(2-\frac{1+\ell_{f}}{1+|E|})$-approximation for monotone submodular MLOP where $\ell_{f}=\frac{f(E)}{\max_{x\in E}f(\{x\})}$ satisfies $1 \leq \ell_f \leq |E|$. Our theory provides new approximation bounds for special cases of the problem, in particular a $(2-\frac{1+r(E)}{1+|E|})$-approximation for the matroid MLOP, where $f = r$ is the rank function of a matroid. We further show that minimum latency vertex cover (MLVC) is $\frac{4}{3}$-approximable, by which we also lower bound the integrality gap of its natural LP relaxation, which might be of independent interest.

Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司