亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The search and retrieval of digital histopathology slides is an important task that has yet to be solved. In this case study, we investigate the clinical readiness of three state-of-the-art histopathology slide search engines, Yottixel, SISH, and RetCCL, on three patients with solid tumors. We provide a qualitative assessment of each model's performance in providing retrieval results that are reliable and useful to pathologists. We found that all three image search engines fail to produce consistently reliable results and have difficulties in capturing granular and subtle features of malignancy, limiting their diagnostic accuracy. Based on our findings, we also propose a minimal set of requirements to further advance the development of accurate and reliable histopathology image search engines for successful clinical adoption.

相關內容

When solving a task with limited labelled data, researchers can either use a general large language model without further update, or use the few examples to tune a specialised smaller model. When enough labels are available, the specialised models outperform the general ones on many NLP tasks. In this work, we aim to investigate how many labelled samples are required for the specialised models to achieve this superior performance, while taking the results variance into consideration. Observing the behaviour of prompting, in-context learning, fine-tuning and instruction-tuning, identifying their break-even points when increasing number of labelled training samples across three tasks of varying complexity, we find that the specialised models often need only few samples ($100-1000$) to be on par or better than the general ones. At the same time, the amount of required labelled data strongly depends on the task complexity and results variance.

The prediction has served as a crucial scientific method in modern social studies. With the recent advancement of Large Language Models (LLMs), efforts have been made to leverage LLMs to predict the human features in social life, such as presidential voting. These works suggest that LLMs are capable of generating human-like responses. However, we find that the promising performance achieved by previous studies is because of the existence of input shortcut features to the response. In fact, by removing these shortcuts, the performance is reduced dramatically. To further revisit the ability of LLMs, we introduce a novel social prediction task, Soc-PRF Prediction, which utilizes general features as input and simulates real-world social study settings. With the comprehensive investigations on various LLMs, we reveal that LLMs cannot work as expected on social prediction when given general input features without shortcuts. We further investigate possible reasons for this phenomenon that suggest potential ways to enhance LLMs for social prediction.

Over the past few years, the abilities of large language models (LLMs) have received extensive attention, which have performed exceptionally well in complicated scenarios such as logical reasoning and symbolic inference. A significant factor contributing to this progress is the benefit of in-context learning and few-shot prompting. However, the reasons behind the success of such models using contextual reasoning have not been fully explored. Do LLMs have understand logical rules to draw inferences, or do they ``guess'' the answers by learning a type of probabilistic mapping through context? This paper investigates the reasoning capabilities of LLMs on two logical reasoning datasets by using counterfactual methods to replace context text and modify logical concepts. Based on our analysis, it is found that LLMs do not truly understand logical rules; rather, in-context learning has simply enhanced the likelihood of these models arriving at the correct answers. If one alters certain words in the context text or changes the concepts of logical terms, the outputs of LLMs can be significantly disrupted, leading to counter-intuitive responses. This work provides critical insights into the limitations of LLMs, underscoring the need for more robust mechanisms to ensure reliable logical reasoning in LLMs.

Large language models (LLMs) often struggle with complex mathematical tasks, prone to "hallucinating" incorrect answers due to their reliance on statistical patterns. This limitation is further amplified in average Small LangSLMs with limited context and training data. To address this challenge, we propose an "Inductive Learning" approach utilizing a distributed network of SLMs. This network leverages error-based learning and hint incorporation to refine the reasoning capabilities of SLMs. Our goal is to provide a framework that empowers SLMs to approach the level of logic-based applications achieved by high-parameter models, potentially benefiting any language model. Ultimately, this novel concept paves the way for bridging the logical gap between humans and LLMs across various fields.

Policy gradient methods are widely adopted reinforcement learning algorithms for tasks with continuous action spaces. These methods succeeded in many application domains, however, because of their notorious sample inefficiency their use remains limited to problems where fast and accurate simulations are available. A common way to improve sample efficiency is to modify their objective function to be computable from off-policy samples without importance sampling. A well-established off-policy objective is the excursion objective. This work studies the difference between the excursion objective and the traditional on-policy objective, which we refer to as the on-off gap. We provide the first theoretical analysis showing conditions to reduce the on-off gap while establishing empirical evidence of shortfalls arising when these conditions are not met.

Language models (LMs) are known to represent the perspectives of some social groups better than others, which may impact their performance, especially on subjective tasks such as content moderation and hate speech detection. To explore how LMs represent different perspectives, existing research focused on positional alignment, i.e., how closely the models mimic the opinions and stances of different groups, e.g., liberals or conservatives. However, human communication also encompasses emotional and moral dimensions. We define the problem of affective alignment, which measures how LMs' emotional and moral tone represents those of different groups. By comparing the affect of responses generated by 36 LMs to the affect of Twitter messages, we observe significant misalignment of LMs with both ideological groups. This misalignment is larger than the partisan divide in the U.S. Even after steering the LMs towards specific ideological perspectives, the misalignment and liberal tendencies of the model persist, suggesting a systemic bias within LMs.

Chain-of-thought (CoT) prompting is a simple and effective method for improving the reasoning capabilities of Large language models (LLMs). The basic idea of CoT is to let LLMs break down their thought processes step-by-step by putting exemplars in the input prompt. However, the densely structured prompt exemplars of CoT may cause the cognitive overload of LLMs. Inspired by human cognition, we introduce CoT-Sep, a novel method that strategically employs separators at the end of each exemplar in CoT prompting. These separators are designed to help the LLMs understand their thought processes better while reasoning. It turns out that CoT-Sep significantly improves the LLMs' performances on complex reasoning tasks (e.g., GSM-8K, AQuA, CSQA), compared with the vanilla CoT, which does not use separators. We also study the effects of the type and the location of separators tested on multiple LLMs, including GPT-3.5-Turbo, GPT-4, and LLaMA-2 7B. Interestingly, the type/location of separators should be chosen appropriately to boost the reasoning capability of CoT.

Graph neural networks (GNNs) are a type of deep learning models that learning over graphs, and have been successfully applied in many domains. Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs. As a remedy, distributed computing becomes a promising solution of training large-scale GNNs, since it is able to provide abundant computing resources. However, the dependency of graph structure increases the difficulty of achieving high-efficiency distributed GNN training, which suffers from the massive communication and workload imbalance. In recent years, many efforts have been made on distributed GNN training, and an array of training algorithms and systems have been proposed. Yet, there is a lack of systematic review on the optimization techniques from graph processing to distributed execution. In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance. Then we introduce a new taxonomy for the optimization techniques in distributed GNN training that address the above challenges. The new taxonomy classifies existing techniques into four categories that are GNN data partition, GNN batch generation, GNN execution model, and GNN communication protocol.We carefully discuss the techniques in each category. In the end, we summarize existing distributed GNN systems for multi-GPUs, GPU-clusters and CPU-clusters, respectively, and give a discussion about the future direction on scalable GNNs.

Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.

北京阿比特科技有限公司