亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Researchers are exploring the integration of IoT and the cloud continuum, together with AI to enhance the cost-effectiveness and efficiency of critical infrastructure (CI) systems. This integration, however, increases susceptibility of CI systems to cyberattacks, potentially leading to disruptions like power outages, oil spills, or even a nuclear mishap. CI systems are inherently complex and generate vast amounts of heterogeneous and high-dimensional data, which crosses many trust boundaries in their journey across the IoT, edge, and cloud domains over the communication network interconnecting them. As a result, they face expanded attack surfaces. To ensure the security of these dataflows, researchers have used deep neural network models with encouraging results. Nevertheless, two important challenges that remain are tackling the computational complexity of these models to reduce convergence times and preserving the accuracy of detection of integrity-violating intrusions. In this paper, we propose an innovative approach that utilizes trained edge cloud models to synthesize central cloud models, effectively overcoming these challenges. We empirically validate the effectiveness of the proposed method by comparing it with traditional centralized and distributed techniques, including a contemporary collaborative technique.

相關內容

Terrain Classification is an essential task in space exploration, where unpredictable environments are difficult to observe using only exteroceptive sensors such as vision. Implementing Neural Network classifiers can have high performance but can be deemed untrustworthy as they lack transparency, which makes them unreliable for taking high-stakes decisions during mission planning. We address this by proposing Neural Networks with Uncertainty Quantification in Terrain Classification. We enable our Neural Networks with Monte Carlo Dropout, DropConnect, and Flipout in time series-capable architectures using only proprioceptive data as input. We use Bayesian Optimization with Hyperband for efficient hyperparameter optimization to find optimal models for trustworthy terrain classification.

We show that a minor variant of the continuous Fr\'echet distance between polygonal curves can be computed using essentially the same algorithm used to solve the discrete version, thus dramatically simplifying the algorithm for computing it. The new variant is not necessarily monotone, but this shortcoming can be easily handled via refinement. Combined with a Dijkstra/Prim type algorithm, this leads to a realization of the Fr\'echet distance (i.e., a morphing) that is locally optimal (aka locally correct), that is both easy to compute, and in practice, takes near linear time on many inputs. The new morphing has the property that the leash is always as short-as-possible. We implemented the new algorithm, and developed various strategies to get a fast execution in practice. Among our new contributions is a new simplification strategy that is distance-sensitive, and enables us to compute the exact continuous Fr\'echet distance in near linear time in practice. We preformed extensive experiments on our new algorithm, and released \texttt{Julia} and \texttt{Python} packages with these new implementations.

When the regressors of a econometric linear model are nonorthogonal, it is well known that their estimation by ordinary least squares can present various problems that discourage the use of this model. The ridge regression is the most commonly used alternative; however, its generalized version has hardly been analyzed. The present work addresses the estimation of this generalized version, as well as the calculation of its mean squared error, goodness of fit and bootstrap inference.

In this work, we present a comprehensive three-phase study to examine (1) the effectiveness of large multimodal models (LMMs) in recognizing cultural contexts; (2) the accuracy of their representations of diverse cultures; and (3) their ability to adapt content across cultural boundaries. We first introduce Dalle Street, a large-scale dataset generated by DALL-E 3 and validated by humans, containing 9,935 images of 67 countries and 10 concept classes. We reveal disparities in cultural understanding at the sub-region level with both open-weight (LLaVA) and closed-source (GPT-4V) models on Dalle Street and other existing benchmarks. Next, we assess models' deeper culture understanding by an artifact extraction task and identify over 18,000 artifacts associated with different countries. Finally, we propose a highly composable pipeline, CultureAdapt, to adapt images from culture to culture. Our findings reveal a nuanced picture of the cultural competence of LMMs, highlighting the need to develop culture-aware systems. Dataset and code are available at //github.com/iamshnoo/crossroads

Audio deepfake detection is an emerging topic, which was included in the ASVspoof 2021. However, the recent shared tasks have not covered many real-life and challenging scenarios. The first Audio Deep synthesis Detection challenge (ADD) was motivated to fill in the gap. The ADD 2022 includes three tracks: low-quality fake audio detection (LF), partially fake audio detection (PF) and audio fake game (FG). The LF track focuses on dealing with bona fide and fully fake utterances with various real-world noises etc. The PF track aims to distinguish the partially fake audio from the real. The FG track is a rivalry game, which includes two tasks: an audio generation task and an audio fake detection task. In this paper, we describe the datasets, evaluation metrics, and protocols. We also report major findings that reflect the recent advances in audio deepfake detection tasks.

As Artificial Intelligence (AI) models are gradually being adopted in real-life applications, the explainability of the model used is critical, especially in high-stakes areas such as medicine, finance, etc. Among the commonly used models, Linear Discriminant Analysis (LDA) is a widely used classification tool that is also explainable thanks to its ability to model class distributions and maximize class separation through linear feature combinations. Nevertheless, real-world data is frequently incomplete, presenting significant challenges for classification tasks and model explanations. In this paper, we propose a novel approach to LDA under missing data, termed \textbf{\textit{Weighted missing Linear Discriminant Analysis (WLDA)}}, to directly classify observations in data that contains missing values without imputation effectively by estimating the parameters directly on missing data and use a weight matrix for missing values to penalize missing entries during classification. Furthermore, we also analyze the theoretical properties and examine the explainability of the proposed technique in a comprehensive manner. Experimental results demonstrate that WLDA outperforms conventional methods by a significant margin, particularly in scenarios where missing values are present in both training and test sets.

Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.

北京阿比特科技有限公司