亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Crowdsourcing has evolved as an organizational approach to distributed problem solving and innovation. As contests are embedded in online communities and evaluation rights are assigned to the crowd, community members face a tension: they find themselves exposed to both competitive motives to win the contest prize and collaborative participation motives in the community. The competitive motive suggests they may evaluate rivals strategically according to their self-interest, the collaborative motive suggests they may evaluate their peers truthfully according to mutual interest. Using field data from Threadless on 38 million peer evaluations of more than 150,000 submissions across 75,000 individuals over 10 years and two natural experiments to rule out alternative explanations, we answer the question of how community members resolve this tension. We show that as their skill level increases, they become increasingly competitive and shift from using self-promotion to sabotaging their closest competitors. However, we also find signs of collaborative behavior when high-skilled members show leniency toward those community members who do not directly threaten their chance of winning. We explain how the individual-level use of strategic evaluations translates into important organizational-level outcomes by affecting the community structure through individuals' long-term participation. While low-skill targets of sabotage are less likely to participate in future contests, high-skill targets are more likely. This suggests a feedback loop between competitive evaluation behavior and future participation. These findings have important implications for the literature on crowdsourcing design, and the evolution and sustainability of crowdsourcing communities.

相關內容

In repeated games, such as auctions, players typically use learning algorithms to choose their actions. The use of such autonomous learning agents has become widespread on online platforms. In this paper, we explore the impact of players incorporating monetary transfers into their agents' algorithms, aiming to incentivize behavior in their favor. Our focus is on understanding when players have incentives to make use of monetary transfers, how these payments affect learning dynamics, and what the implications are for welfare and its distribution among the players. We propose a simple game-theoretic model to capture such scenarios. Our results on general games show that in a broad class of games, players benefit from letting their learning agents make payments to other learners during the game dynamics, and that in many cases, this kind of behavior improves welfare for all players. Our results on first- and second-price auctions show that in equilibria of the ``payment policy game,'' the agents' dynamics can reach strong collusive outcomes with low revenue for the auctioneer. These results highlight a challenge for mechanism design in systems where automated learning agents can benefit from interacting with their peers outside the boundaries of the mechanism.

Explainable AI (XAI) has a counterpart in analytical modeling which we refer to as model explainability. We tackle the issue of model explainability in the context of prediction models. We analyze a dataset of loans from a credit card company and apply three stages: execute and compare four different prediction methods, apply the best known explainability techniques in the current literature to the model training sets to identify feature importance (FI) (static case), and finally to cross-check whether the FI set holds up under what if prediction scenarios for continuous and categorical variables (dynamic case). We found inconsistency in FI identification between the static and dynamic cases. We summarize the state of the art in model explainability and suggest further research to advance the field.

3D generation has seen remarkable progress in recent years. Existing techniques, such as score distillation methods, produce notable results but require extensive per-scene optimization, impacting time efficiency. Alternatively, reconstruction-based approaches prioritize efficiency but compromise quality due to their limited handling of uncertainty. We introduce GECO, a novel method for high-quality 3D generative modeling that operates within a second. Our approach addresses the prevalent issues of uncertainty and inefficiency in current methods through a two-stage approach. In the initial stage, we train a single-step multi-view generative model with score distillation. Then, a second-stage distillation is applied to address the challenge of view inconsistency from the multi-view prediction. This two-stage process ensures a balanced approach to 3D generation, optimizing both quality and efficiency. Our comprehensive experiments demonstrate that GECO achieves high-quality image-to-3D generation with an unprecedented level of efficiency.

Software vulnerabilities can cause numerous problems, including crashes, data loss, and security breaches. These issues greatly compromise quality and can negatively impact the market adoption of software applications and systems. Traditional bug-fixing methods, such as static analysis, often produce false positives. While bounded model checking, a form of Formal Verification (FV), can provide more accurate outcomes compared to static analyzers, it demands substantial resources and significantly hinders developer productivity. Can Machine Learning (ML) achieve accuracy comparable to FV methods and be used in popular instant code completion frameworks in near real-time? In this paper, we introduce SecureFalcon, an innovative model architecture with only 121 million parameters derived from the Falcon-40B model and explicitly tailored for classifying software vulnerabilities. To achieve the best performance, we trained our model using two datasets, namely the FormAI dataset and the FalconVulnDB. The FalconVulnDB is a combination of recent public datasets, namely the SySeVR framework, Draper VDISC, Bigvul, Diversevul, SARD Juliet, and ReVeal datasets. These datasets contain the top 25 most dangerous software weaknesses, such as CWE-119, CWE-120, CWE-476, CWE-122, CWE-190, CWE-121, CWE-78, CWE-787, CWE-20, and CWE-762. SecureFalcon achieves 94% accuracy in binary classification and up to 92% in multiclassification, with instant CPU inference times. It outperforms existing models such as BERT, RoBERTa, CodeBERT, and traditional ML algorithms, promising to push the boundaries of software vulnerability detection and instant code completion frameworks.

When evaluating a learner's knowledge proficiency, the multiple-choice question is an efficient and widely used format in standardized tests. Nevertheless, generating these questions, particularly plausible distractors (incorrect options), poses a considerable challenge. Generally, the distractor generation can be classified into cloze-style distractor generation (CDG) and natural questions distractor generation (NQDG). In contrast to the CDG, utilizing pre-trained language models (PLMs) for NQDG presents three primary challenges: (1) PLMs are typically trained to generate ``correct'' content, like answers, while rarely trained to generate ``plausible" content, like distractors; (2) PLMs often struggle to produce content that aligns well with specific knowledge and the style of exams; (3) NQDG necessitates the model to produce longer, context-sensitive, and question-relevant distractors. In this study, we introduce a fine-tuning framework named DGRC for NQDG in Chinese multi-choice reading comprehension from authentic examinations. DGRC comprises three major components: hard chain-of-thought, multi-task learning, and generation mask patterns. The experiment results demonstrate that DGRC significantly enhances generation performance, achieving a more than 2.5-fold improvement in BLEU scores.

As one of the most enduring metaphors within legal discourse, the marketplace of ideas has wielded considerable influence over the jurisprudential landscape for decades. A century after the inception of this theory, ChatGPT emerged as a revolutionary technological advancement in the twenty-first century. This research finds that ChatGPT effectively manifests the marketplace metaphor. It not only instantiates the promises envisaged by generations of legal scholars but also lays bare the perils discerned through sustained academic critique. Specifically, the workings of ChatGPT and the marketplace of ideas theory exhibit at least four common features: arena, means, objectives, and flaws. These shared attributes are sufficient to render ChatGPT historically the most qualified engine for actualizing the marketplace of ideas theory. The comparison of the marketplace theory and ChatGPT merely marks a starting point. A more meaningful undertaking entails reevaluating and reframing both internal and external AI policies by referring to the accumulated experience, insights, and suggestions researchers have raised to fix the marketplace theory. Here, a pivotal issue is: should truth-seeking be set as the goal of AI content governance? Given the unattainability of the absolute truth-seeking goal, I argue against adopting zero-risk policies. Instead, a more judicious approach would be to embrace a knowledge-based alternative wherein large language models (LLMs) are trained to generate competing and divergent viewpoints based on sufficient justifications. This research also argues that so-called AI content risks are not created by AI companies but are inherent in the entire information ecosystem. Thus, the burden of managing these risks should be distributed among different social actors, rather than being solely shouldered by chatbot companies.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

The LSTM network was proposed to overcome the difficulty in learning long-term dependence, and has made significant advancements in applications. With its success and drawbacks in mind, this paper raises the question - do RNN and LSTM have long memory? We answer it partially by proving that RNN and LSTM do not have long memory from a statistical perspective. A new definition for long memory networks is further introduced, and it requires the model weights to decay at a polynomial rate. To verify our theory, we convert RNN and LSTM into long memory networks by making a minimal modification, and their superiority is illustrated in modeling long-term dependence of various datasets.

Transformer-based models are now widely used in NLP, but we still do not understand a lot about their inner workings. This paper describes what is known to date about the famous BERT model (Devlin et al. 2019), synthesizing over 40 analysis studies. We also provide an overview of the proposed modifications to the model and its training regime. We then outline the directions for further research.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司