Managing Research Data, and making it available for use/reuse by others in line with the UKRI Concordat on Open Research Data and FAIR principles, is a major issue for research-intensive organisations. In this case study we outline an institute-wide review of data management in practice, carried out at the Rosalind Franklin Institute (The Franklin) in partnership with external consultants, Curlew Research, in March 2022. We aim to describe the processes involved in undertaking a review of the services already in place that support good practice in managing research data, and their uptake, with an emphasis on the methodology used. We conducted interviews with scientific Theme Leads which set the scope for the Data Management Workshops subsequently held with Researchers. Workshops were valuable in both providing actionable insights for data management and in priming the audience for future discussions. The final report produced for The Franklin, summarising results of the analysis, provides a snapshot of current practice for the Institute, highlighting what is working well and where improvements might be made, and provides a benchmark against which development can be measured in the coming years. The Review will continue to be conducted on an annual basis, reflecting changes in a fast-moving area and enabling an agile approach to research data management.
Modern software systems heavily rely on external libraries developed by third-parties to ensure efficient development. However, frequent library upgrades can lead to compatibility issues between the libraries and their client systems. In this paper, we introduce CompSuite, a dataset that includes 123 real-world Java client-library pairs where upgrading the library causes an incompatibility issue in the corresponding client. Each incompatibility issue in CompSuite is associated with a test case authored by the developers, which can be used to reproduce the issue. The dataset also provides a command-line interface that simplifies the execution and validation of each issue. With this infrastructure, users can perform an inspection of any incompatibility issue with the push of a button, or reproduce an issue step-by-step for a more detailed investigation. We make CompSuite publicly available to promote open science. We believe that various software analysis techniques, such as compatibility checking, debugging, and regression test selection, can benefit from CompSuite.
Global crises and regulatory developments require increased supply chain transparency and resilience. Companies do not only need to react to a dynamic environment but have to act proactively and implement measures to prevent production delays and reduce risks in the supply chains. However, information about supply chains, especially at the deeper levels, is often intransparent and incomplete, making it difficult to obtain precise predictions about prospective risks. By connecting different data sources, we model the supply network as a knowledge graph and achieve transparency up to tier-3 suppliers. To predict missing information in the graph, we apply state-of-the-art knowledge graph completion methods and attain a mean reciprocal rank of 0.4377 with the best model. Further, we apply graph analysis algorithms to identify critical entities in the supply network, supporting supply chain managers in automated risk identification.
Peer reviewed publications are considered the gold standard in certifying and disseminating ideas that a research community considers valuable. However, we identify two major drawbacks of the current system: (1) the overwhelming demand for reviewers due to a large volume of submissions, and (2) the lack of incentives for reviewers to participate and expend the necessary effort to provide high-quality reviews. In this work, we adopt a mechanism-design approach to propose improvements to the peer review process, tying together the paper submission and review processes and simultaneously incentivizing high-quality submissions and reviews. In the submission stage, authors participate in a VCG auction for review slots by submitting their papers along with a bid that represents their expected value for having their paper reviewed. For the reviewing stage, we propose a novel peer prediction mechanism (H-DIPP) building on recent work in the information elicitation literature, which incentivizes participating reviewers to provide honest and effortful reviews. The revenue raised in the submission stage auction is used to pay reviewers based on the quality of their reviews in the reviewing stage.
Artificial Intelligence (AI) and, in particular, Machine Learning (ML) have emerged to be utilized in various applications due to their capability to learn how to solve complex problems. Over the last decade, rapid advances in ML have presented Deep Neural Networks (DNNs) consisting of a large number of neurons and layers. DNN Hardware Accelerators (DHAs) are leveraged to deploy DNNs in the target applications. Safety-critical applications, where hardware faults/errors would result in catastrophic consequences, also benefit from DHAs. Therefore, the reliability of DNNs is an essential subject of research. In recent years, several studies have been published accordingly to assess the reliability of DNNs. In this regard, various reliability assessment methods have been proposed on a variety of platforms and applications. Hence, there is a need to summarize the state of the art to identify the gaps in the study of the reliability of DNNs. In this work, we conduct a Systematic Literature Review (SLR) on the reliability assessment methods of DNNs to collect relevant research works as much as possible, present a categorization of them, and address the open challenges. Through this SLR, three kinds of methods for reliability assessment of DNNs are identified including Fault Injection (FI), Analytical, and Hybrid methods. Since the majority of works assess the DNN reliability by FI, we characterize different approaches and platforms of the FI method comprehensively. Moreover, Analytical and Hybrid methods are propounded. Thus, different reliability assessment methods for DNNs have been elaborated on their conducted DNN platforms and reliability evaluation metrics. Finally, we highlight the advantages and disadvantages of the identified methods and address the open challenges in the research area.
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.
State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines.