Gaussian splatting, renowned for its exceptional rendering quality and efficiency, has emerged as a prominent technique in 3D scene representation. However, the substantial data volume of Gaussian splatting impedes its practical utility in real-world applications. Herein, we propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS), which harnesses compact Gaussian primitives for faithful 3D scene modeling with a remarkably reduced data size. To ensure the compactness of Gaussian primitives, we devise a hybrid primitive structure that captures predictive relationships between each other. Then, we exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms. Moreover, we develop a rate-constrained optimization scheme to eliminate redundancies within such hybrid primitives, steering our CompGS towards an optimal trade-off between bitrate consumption and representation efficacy. Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality. Our code will be released on GitHub for further research.
Test Driven Development (TDD) is one of the major practices of Extreme Programming for which incremental testing and refactoring trigger the code development. TDD has limited adoption in the industry, as it requires more code to be developed and experienced developers. Generative AI (GenAI) may reduce the extra effort imposed by TDD. In this work, we introduce an approach to automatize TDD by embracing GenAI either in a collaborative interaction pattern in which developers create tests and supervise the AI generation during each iteration or a fully-automated pattern in which developers only supervise the AI generation at the end of the iterations. We run an exploratory experiment with ChatGPT in which the interaction patterns are compared with the non-AI TDD regarding test and code quality and development speed. Overall, we found that, for our experiment and settings, GenAI can be efficiently used in TDD, but it requires supervision of the quality of the produced code. In some cases, it can even mislead non-expert developers and propose solutions just for the sake of the query.
Coreference resolution, critical for identifying textual entities referencing the same entity, faces challenges in pronoun resolution, particularly identifying pronoun antecedents. Existing methods often treat pronoun resolution as a separate task from mention detection, potentially missing valuable information. This study proposes the first end-to-end neural network system for Persian pronoun resolution, leveraging pre-trained Transformer models like ParsBERT. Our system jointly optimizes both mention detection and antecedent linking, achieving a 3.37 F1 score improvement over the previous state-of-the-art system (which relied on rule-based and statistical methods) on the Mehr corpus. This significant improvement demonstrates the effectiveness of combining neural networks with linguistic models, potentially marking a significant advancement in Persian pronoun resolution and paving the way for further research in this under-explored area.
In this work we present a new method for the estimation of Mutual Information (MI) between random variables. Our approach is based on an original interpretation of the Girsanov theorem, which allows us to use score-based diffusion models to estimate the Kullback Leibler divergence between two densities as a difference between their score functions. As a by-product, our method also enables the estimation of the entropy of random variables. Armed with such building blocks, we present a general recipe to measure MI, which unfolds in two directions: one uses conditional diffusion process, whereas the other uses joint diffusion processes that allow simultaneous modelling of two random variables. Our results, which derive from a thorough experimental protocol over all the variants of our approach, indicate that our method is more accurate than the main alternatives from the literature, especially for challenging distributions. Furthermore, our methods pass MI self-consistency tests, including data processing and additivity under independence, which instead are a pain-point of existing methods.
Recent research yielded a wide array of drift detectors. However, in order to achieve remarkable performance, the true class labels must be available during the drift detection phase. This paper targets at detecting drift when the ground truth is unknown during the detection phase. To that end, we introduce Gaussian Split Detector (GSD) a novel drift detector that works in batch mode. GSD is designed to work when the data follow a normal distribution and makes use of Gaussian mixture models to monitor changes in the decision boundary. The algorithm is designed to handle multi-dimension data streams and to work without the ground truth labels during the inference phase making it pertinent for real world use. In an extensive experimental study on real and synthetic datasets, we evaluate our detector against the state of the art. We show that our detector outperforms the state of the art in detecting real drift and in ignoring virtual drift which is key to avoid false alarms.
Co-speech gesturing is an important modality in conversation, providing context and social cues. In character animation, appropriate and synchronised gestures add realism, and can make interactive agents more engaging. Historically, methods for automatically generating gestures were predominantly audio-driven, exploiting the prosodic and speech-related content that is encoded in the audio signal. In this paper we instead experiment with using LLM features for gesture generation that are extracted from text using LLAMA2. We compare against audio features, and explore combining the two modalities in both objective tests and a user study. Surprisingly, our results show that LLAMA2 features on their own perform significantly better than audio features and that including both modalities yields no significant difference to using LLAMA2 features in isolation. We demonstrate that the LLAMA2 based model can generate both beat and semantic gestures without any audio input, suggesting LLMs can provide rich encodings that are well suited for gesture generation.
Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.